Cocoa bean shell is one of the main by-products of chocolate manufacturing and possesses several compounds with biofunctionalities. It can function as an antibacterial agent, and its action is mostly reported against . However, only a few studies have investigated the cocoa bean shell compounds responsible for this activity.
View Article and Find Full Text PDFEthnopharmacological Relevance: The main objective of the present study was to collect and gather information on herbal remedies traditionally used for the treatment of malaria in Bukavu and Uvira, two towns of the South Kivu province in DRC.
Material And Methods: Direct interview with field enquiries allowed collecting ethnobotanical data; for each plant, a specimen was harvested in the presence of the interviewed traditional healers (THs). The recorded information included vernacular names, morphological parts of plants, methods of preparation and administration of remedies, dosage and treatment duration.
Transmission and amplification of chemical signals across lipid bilayer membranes is of profound significance in many biological processes, from the development of multicellular organisms to information processing in the nervous system. In biology, membrane-spanning proteins are responsible for the transmission of chemical signals across membranes, and signal transduction is often associated with an amplified signalling cascade. The ability to reproduce such processes in artificial systems has potential applications in sensing, controlled drug delivery and communication between compartments in tissue-like constructs of synthetic vesicles.
View Article and Find Full Text PDFWater is a unique solvent and the design of selective artificial hosts that can efficiently work in an aqueous medium is a challenging task. It is known that the calix[6]tren zinc complex can recognize neutral guests in organic solvents. This complex was incorporated into dodecylphosphocholine micelles (DPC) and studied by NMR.
View Article and Find Full Text PDFThe use of micelles to transpose lipophilic receptors, such as uranyl-salophen complexes, into an aqueous environment is a valuable and versatile tool. Receptor 1 incorporated into CTABr micelles forms a supramolecular system that exhibits excellent binding properties towards fluoride in water, despite the competition of the aqueous medium. To fully evaluate the potential of micellar nanodevices, we extended our previous study to other types of surfactants and to a uranyl-salophen receptor with a more extended aromatic surface.
View Article and Find Full Text PDFMicellar incorporation of hydrophobic molecular receptors is a promising strategy to obtain efficient nanodevices that work in water. In order to fully evaluate the potential of this approach, information on the localization and orientation of the receptor inside the micelle are necessary. Systematic studies undertaken on a uranyl-salophen receptor incorporated into CTABr and CTACl micelles show that nuclear magnetic resonance paramagnetic relaxation enhancement (NMR-PRE) experiments are particularly suitable to provide this type of information.
View Article and Find Full Text PDF