Lytic polysaccharide monooxygenases (LPMOs) catalyze oxidative cleavage of crystalline polysaccharides such as cellulose and are crucial for the conversion of plant biomass in Nature and in industrial applications. Sunlight promotes microbial conversion of plant litter; this effect has been attributed to photochemical degradation of lignin, a major redox-active component of secondary plant cell walls that limits enzyme access to the cell wall carbohydrates. Here, we show that exposing lignin to visible light facilitates cellulose solubilization by promoting formation of HO that fuels LPMO catalysis.
View Article and Find Full Text PDFThe yeast NCYC 921 was used for lipid production, using biomass hydrolysate as carbon source. The hydrolysate was obtained by enzymatic hydrolysis of biomass (at high solids loading) previously subjected to a hydrothermal pre-treatment. Afterwards was grown on sp.
View Article and Find Full Text PDFBanana's pseudostem pulp (BPP) is a potential by-product obtained in the mechanical fiber extraction of banana's pseudostem. Its chemical characterization revealed to have an interesting composition, with a high polysaccharides content and low content in lignin, which makes it particularly relevant for the biorefinery's biochemical platform. Autohydrolysis pretreatment, studied under isothermal (140 °C) and non-isothermal conditions (140-220 °C), yielded oligosaccharides, mainly gluco-oligosaccharides, as the main soluble products.
View Article and Find Full Text PDFThis work aims to evaluate the prebiotic potential of oligosaccharides (OS) obtained from autohydrolysis of olive tree pruning biomass (OTPB). Two selected fractions (F1 and F2) were characterized and used in in vitro fermentations by two Bifidobacterium spp. (B.
View Article and Find Full Text PDFThis work evaluates the bifidogenic potential of substituted xylo-oligosaccharides (XOS) obtained from a lignocellulosic feedstock (corn straw). Autohydrolysis was used to selectively hydrolyse the xylan-rich hemicellulosic fraction and the soluble oligosaccharides were purified by gel filtration chromatography. Selected oligosaccharides fractions within the target ranges of polymerization degree (4-6 and 9-21, samples S1 and S2, respectively) were characterized and their bifidogenic potential was investigated by in vitro fermentations using human fecal inocula.
View Article and Find Full Text PDFThis work studied the processing of biomass mixtures containing three lignocellulosic materials largely available in Southern Europe, eucalyptus residues (ER), wheat straw (WS) and olive tree pruning (OP). The mixtures were chemically characterized, and their pretreatment, by autohydrolysis, evaluated within a severity factor (logR0) ranging from 1.73 up to 4.
View Article and Find Full Text PDFThis work proposes the biorefining of eucalyptus residues (ER), wheat straw (WS) and olive tree pruning (OP) combining hydrothermal pretreatment (autohydrolysis) with acid post-hydrolysis of the liquid fraction and enzymatic hydrolysis of the solid fraction towards maximal recovery of monosaccharides from those lignocellulose materials. Autohydrolysis of ER, WS and OP was performed under non-isothermal conditions (195-230°C) and the non-cellulosic saccharides were recovered in the liquid fraction while cellulose and lignin remained in the solid fraction. The acid post-hydrolysis of the soluble oligosaccharides was studied by optimizing sulfuric acid concentration (1-4%w/w) and reaction time (10-60 min), employing a factorial (2(2)) experimental design.
View Article and Find Full Text PDFWheat straw was subjected to three different processes prior to saccharification, namely alkaline pulping, natural pulping and autohydrolysis, in order to study their effect on the rate of enzymatic hydrolysis. Parameters like medium concentration, temperature and time have been varied in order to optimize each method. Milling the raw material to a length of 4mm beforehand showed the best cost-value-ratio compared to other grinding methods studied.
View Article and Find Full Text PDFMild fractionation/pretreatment processes are becoming the most preferred choices for biomass processing within the biorefinery framework. To further explore their advantages, new developments are needed, especially to increase the extent of the hydrolysis of poly- and oligosaccharides. A possible way forward is the use of solid acid catalysts that may overcome many current drawbacks of other common methods.
View Article and Find Full Text PDFOil palm empty fruit bunches (OPEFB) fibre, a by-product generated from non-woody, tropical perennial oil palm crop was evaluated for xylooligosaccharides (XOS) production. Samples of OPEFB fibre were subjected to non-isothermal autohydrolysis treatment using a temperature range from 150 to 220 °C. The highest XOS concentration, 17.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
January 2011
Detailed kinetic and physiological characterisation of eight mannitol-producing lactic acid bacteria, Leuconostoc citreum ATCC 49370, L. mesenteroides subsp. cremoris ATCC19254, L.
View Article and Find Full Text PDFWheat straw was subjected to autohydrolysis treatments in order to selectively hydrolyze the hemicellulose fraction. The effects of temperature (150-240 degrees C) and non-isothermal reaction time on the composition of both liquid and solid phases were evaluated and interpreted using the severity factor (log R0). The operational conditions leading to the maximum recovery of hemicellulose-derived sugars were established for log R0 = 3.
View Article and Find Full Text PDFThe dilute acid posthydrolysis of wheat straw hemicellulosic oligosaccharides obtained by autohydrolysis was evaluated. An empirical model was used to describe the effect of catalyst concentration (sulfuric acid, 0.1-4% w/w) and reaction time (0-60 min) based on data from a Doehlert experimental design.
View Article and Find Full Text PDFAppl Biochem Biotechnol
March 2008
Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework.
View Article and Find Full Text PDFThis report introduces the biotechnological valorization potential indicator (BVPI) concept, a metric to measure the degree of suitability of lignocellulosic materials to be used as feedstock in a biorefinery framework. This indicator groups the impact of the main factors influencing upgrade-ability, both the biological/chemical nature of the materials, and the economical, technological and geographical factors. The BVPI was applied to the identification of the most relevant opportunities and constraints pertaining to the lignocellulosic by-products from the Portuguese agro-industrial cluster.
View Article and Find Full Text PDFA brewery spent-grain hemicellulosic hydrolysate was used for xylitol production by Debaryomyces hansenii. Addition of 6 g yeast extract/l increased the xylitol yield to 0.57 g/g, and productivity to 0.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2006
The combined effects of inhibitors present in lignocellulosic hydrolysates was studied using a multivariate statistical approach. Acetic acid (0-6 g/L), formic acid (0-4.6 g/L), and hydroquinone (0-3 g/L) were tested as model inhibitors in synthetic media containing a mixture of glucose, xylose, and arabinose simulating concentrated hemicellulosic hydrolysates.
View Article and Find Full Text PDFDebaryomyces hansenii is a polyol overproducing yeast that can have a potential use for upgrading lignocellulosic hydrolysates. Therefore, the establishment of its tolerance to metabolic inhibitors found in hydrolysates is of major interest. We studied the effects of selected aliphatic acids, phenolic compounds, and furfural.
View Article and Find Full Text PDFIsothermal autohydrolysis treatments of brewery's spent grain were used as a method for hemicellulose solubilization and xylo-oligosaccharides production. The time course of the concentrations of residual hemicelluloses (made up of xylan and arabinan) and reaction products were determined in experiments carried out at temperatures in the range from 150 to 190 degrees C using liquid-to-solid ratios of 8 and 10 g/g. To model the experimental findings concerning to brewery's spent grain autohydrolysis several kinetic models based on sequential pseudo-homogeneous first-order reactions were tested.
View Article and Find Full Text PDFDilute-acid hydrolysis of brewery's spent grain to obtain a pentose-rich fermentable hydrolysate was investigated. The influence of operational conditions on polysaccharide hydrolysis was assessed by the combined severity parameter (CS) in the range of 1.39-3.
View Article and Find Full Text PDFA readily fermentable pentose-containing hydrolysate was obtained from Brewery's spent grain by a two-step process consisting of an auto-hydrolysis (converting the hemicelluloses into oligosaccharides) followed by an enzymatic or sulfuric acid-catalyzed posthydrolysis (converting the oligosaccharides into monosaccharides). Enzymatic hydrolyses were performed with several commercial enzymes with xylanolytic and cellulolytic activities. Acid-catalyzed hydrolyses were carried out at 121 degrees C under various sulfuric acid concentrations and reaction times, and the effects of treatments were interpreted by means of a corrected combined severity factor (CS*), which varied in the range of 0.
View Article and Find Full Text PDF