Teriparatide (PTH (1-34)), PTHrP (1-36), and abaloparatide (ABL) have been used for the treatment of osteoporosis, but their efficacy long term is significantly limited. The 3 peptides exert time- and dose-dependent differential responses in osteoblasts, leading us to hypothesize they may also differentially modulate the osteoblast transcriptome. Treatment of mouse calvarial osteoblasts with 1 nM of the peptides for 4 hours results in RNA sequencing data with PTH (1-34) regulating 367 genes, including 194 unique genes; PTHrP (1-36) regulating 117 genes, including 15 unique genes; and ABL regulating 179 genes, including 20 unique genes.
View Article and Find Full Text PDFTeriparatide (PTH(1-34)) and its analogs, PTHrP(1-36) and abaloparatide (ABL) have been used for the treatment of osteoporosis, but their efficacy over long-term use is significantly limited. The 3 peptides exert time- and dose-dependent differential responses in osteoblasts, leading us to hypothesize that they may also differentially modulate the osteoblast transcriptome. We show that treatment of mouse calvarial osteoblasts with 1 nM of the 3 peptides for 4 h results in RNA-Seq data with PTH(1-34) regulating 367 genes, including 194 unique genes; PTHrP(1-36) regulating 117 genes, including 15 unique genes; and ABL regulating 179 genes, including 20 unique genes.
View Article and Find Full Text PDF