All free-living microorganisms homeostatically maintain the fluidity of their membranes by adapting lipid composition to environmental temperatures. Here, we quantify enzymes and metabolic intermediates of the Escherichia coli fatty acid and phospholipid synthesis pathways, to describe how this organism measures temperature and restores optimal membrane fluidity within a single generation after a temperature shock. A first element of this regulatory system is a temperature-sensitive metabolic valve that allocates flux between the saturated and unsaturated fatty acid synthesis pathways via the branchpoint enzymes FabI and FabB.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
July 2023
Background: Stress is a major risk factor for depression, and both are associated with important changes in decision-making patterns. However, decades of research have only weakly connected physiological measurements of stress to the subjective experience of depression. Here, we examined the relationship between prolonged physiological stress, mood, and explore-exploit decision making in a population navigating a dynamic environment under stress: health care workers during the COVID-19 pandemic.
View Article and Find Full Text PDFCancer cells often encounter hypoxic and hypo-nutrient conditions, which force them to make adaptive changes to meet their high demands for energy and various biomaterials for biomass synthesis. As a result, enhanced catabolism (breakdown of macromolecules for energy production) and anabolism (macromolecule synthesis from bio-precursors) are induced in cancer. This phenomenon is called "metabolic reprogramming," a cancer hallmark contributing to cancer development, metastasis, and drug resistance.
View Article and Find Full Text PDFEvery cell must produce enough membrane to contain itself. However, the mechanisms by which the rate of membrane synthesis is coupled with the rate of cell growth remain unresolved. By comparing substrate and enzyme concentrations of the fatty acid and phospholipid synthesis pathways of across a 3-fold range of carbon-limited growth rates, we show that the rate of membrane phospholipid synthesis during steady-state growth is determined principally through allosteric control of a single enzyme, PlsB.
View Article and Find Full Text PDFBackground: Intravaginal rings (IVRs) for HIV pre-exposure prophylaxis (PrEP) theoretically overcome some adherence concerns associated with frequent dosing that can occur with oral or vaginal film/gel regimens. An innovative pod-IVR, composed of an elastomer scaffold that can hold up to 10 polymer-coated drug cores (or "pods"), is distinct from other IVR designs as drug release from each pod can be controlled independently. A pod-IVR has been developed for the delivery of tenofovir (TFV) disoproxil fumarate (TDF) in combination with emtricitabine (FTC), as daily oral TDF-FTC is the only Food and Drug Administration (FDA)-approved regimen for HIV PrEP.
View Article and Find Full Text PDFGlobally, women bear an uneven burden for sexual HIV acquisition. Results from two clinical trials evaluating intravaginal rings (IVRs) delivering the antiretroviral agent dapivirine have shown that protection from HIV infection can be achieved with this modality, but high adherence is essential. Multipurpose prevention technologies (MPTs) can potentially increase product adherence by offering protection against multiple vaginally transmitted infections and unintended pregnancy.
View Article and Find Full Text PDFTopical preexposure prophylaxis (PrEP) against HIV has been marginally successful in recent clinical trials with low adherence rates being a primary factor for failure. Controlled, sustained release of antiretroviral (ARV) drugs may help overcome these low adherence rates if the product is protective for extended periods of time. The oral combination of tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) is currently the only FDA-approved ARV drug for HIV PrEP.
View Article and Find Full Text PDFPreexposure prophylaxis (PrEP) against HIV using oral regimens based on the nucleoside reverse transcriptase inhibitor tenofovir disoproxil fumarate (TDF) has been effective to various degrees in multiple clinical trials, and the CCR5 receptor antagonist maraviroc (MVC) holds potential for complementary efficacy. The effectiveness of HIV PrEP is highly dependent on adherence. Incorporation of the TDF-MVC combination into intravaginal rings (IVRs) for sustained mucosal delivery could increase product adherence and efficacy compared with oral and vaginal gel formulations.
View Article and Find Full Text PDFOral or topical daily administration of antiretroviral (ARV) drugs to HIV-1-negative individuals in vulnerable populations is a promising strategy for HIV-1 prevention. Adherence to the dosing regimen has emerged as a critical factor determining efficacy outcomes of clinical trials. Because adherence to therapy is inversely related to the dosing period, sustained release or long-acting ARV formulations hold significant promise for increasing the effectiveness of HIV-1 preexposure prophylaxis (PrEP) by reducing dosing frequency.
View Article and Find Full Text PDF