Publications by authors named "Flora Saint Charles"

Erdheim-Chester disease (ECD) is a rare, systemic, non-Langerhans cell histiocytosis neoplasm, which is characterized by the infiltration of CD63+ CD1a- histiocytes in multiple tissues. The BRAFV600E mutation is frequently present in individuals with ECD and has been detected in hematopoietic stem cells and immune cells from the myeloid and systemic compartments. Immune cells and pro-inflammatory cytokines are present in lesions, suggesting that ECD involves immune cell recruitment.

View Article and Find Full Text PDF
Article Synopsis
  • Erdheim-Chester disease (ECD) is a rare condition characterized by lipid-rich histiocytes infiltrating various tissues, with cardiovascular issues being common and contributing to poor outcomes.
  • A study found that male ECD patients with the BRAF mutation have low levels of HDL cholesterol and reduced ability of their blood serum to remove cholesterol from macrophages, associated with a high rate of cardiovascular involvement (84%).
  • Treatment with vemurafenib, a BRAF inhibitor, improved cholesterol efflux and decreased aortic infiltration, suggesting that BRAF mutation and HDL levels are crucial factors in the disease's progression and severity.
View Article and Find Full Text PDF

Aims: Macrophage apoptosis is a prominent feature of atherosclerosis, yet whether cell death-protected macrophages would favour the resolution of already established atherosclerotic lesions, and thus hold therapeutic potential, remains unknown.

Methods And Results: We irradiated then transplanted into Apoe(-/-) or LDLr(-/-) recipient mice harbouring established atherosclerotic lesions, bone marrow cells from mice displaying enhanced macrophage survival through overexpression of the antiapoptotic gene hBcl-2 (Mø-hBcl2 Apoe(-/-) or Mø-hBcl2 Apoe(+/+) LDLr(-/-)). Both recipient mice exhibited decreased lesional apoptotic cell content and reduced necrotic areas when repopulated with Mø-hBcl2 mouse-derived bone marrow cells.

View Article and Find Full Text PDF

Scavenger receptor class B type I (SR-BI)-deficient mice display reduced survival to endotoxic shock and sepsis. The understanding of the mechanisms underlying SR-BI protection has been hampered by the large spectrum of SR-BI functions and ligands. It notably plays an important role in the liver in high-density lipoprotein metabolism, but it is also thought to participate in innate immunity as a pattern recognition receptor for bacterial endotoxins, such as LPS.

View Article and Find Full Text PDF

Objective: Alterations of the chemokine receptor CX3CR1 gene were associated with a reduced risk of myocardial infarction in human and limited atherosclerosis in mice. In this study, we addressed whether CX3CR1 antagonists are potential therapeutic tools to limit acute and chronic inflammatory processes in atherosclerosis.

Approach And Results: Treatment with F1, an amino terminus-modified CX3CR1 ligand endowed with CX3CR1 antagonist activity, reduced the extent of atherosclerotic lesions in both Apoe(-/-) and Ldlr(-/-) proatherogenic mouse models.

View Article and Find Full Text PDF

Objective: Bcl-x is the most abundantly expressed member of the Bcl-2 gene family in macrophages, but its role in macrophage apoptosis during atherogenesis is unknown.

Methods And Results: We previously reported dual pro- and antiatherogenic effects of macrophage survival in early versus advanced atherosclerotic lesions, respectively, potentially reflecting growing impairment of efferocytosis during plaque progression. Here, we specifically inactivated Bcl-x in macrophages and evaluated its impact on atherosclerotic lesion formation in Apoe(-/-) mice at various stages of the disease.

View Article and Find Full Text PDF

Objective: Low high-density lipoprotein (HDL) cholesterol levels are frequently observed in familial hypercholesterolemia (FH) and might be associated with functional alterations of HDL particles that may influence their efficaciousness in the reverse cholesterol transport pathway.

Methods And Results: We evaluated key steps of the reverse cholesterol transport, ie, cellular free cholesterol efflux, cholesteryl ester transfer protein-mediated cholesteryl ester (CE) transfer from HDL to apolipoprotein B-containing lipoproteins, and hepatic HDL-CE uptake, in patients displaying FH (n = 12) and in healthy normolipidemic control subjects (n = 12). Large HDL2 particles isolated from FH patients displayed a reduced capacity to mediate free cholesterol efflux via both scavenger receptor-BI- and ABCG1-dependent pathways.

View Article and Find Full Text PDF

Scavenger receptor SR-BI significantly contributes to HDL cholesterol metabolism and atherogenesis in mice. However, the role of SR-BI may not be as pronounced in humans due to cholesteryl ester transfer protein (CETP) activity. To address the impact of CETP expression on the adverse effects associated with SR-BI deficiency, we cross-bred our SR-BI conditional knock-out mouse model with CETP transgenic mice.

View Article and Find Full Text PDF

Background: Immunoinflammatory mechanisms are implicated in the atherogenic process. The polarization of the immune response and the nature of the immune cells involved, however, are major determinants of the net effect, which may be either proatherogenic or antiatherogenic. Dendritic cells (DCs) are central to the regulation of immunity, the polarization of the immune response, and the induction of tolerance to antigens.

View Article and Find Full Text PDF

Background: Because apoptotic cell clearance appears to be defective in advanced compared with early atherosclerotic plaques, macrophage apoptosis may differentially affect plaque progression as a function of lesion stage.

Methods And Results: We first evaluated the impact of targeted protection of macrophages against apoptosis at both early and advanced stages of atherosclerosis. Increased resistance of macrophages to apoptosis in early atherosclerotic lesions was associated with increased plaque burden; in contrast, it afforded protection against progression to advanced lesions.

View Article and Find Full Text PDF

Impaired immune function and associated immunosuppression are hallmarks of septic syndromes. As part of an overall deactivation of the immune system, profound depletion of dendritic cells (DCs) occurs in both septic patients and septic mice. Such depletion of DCs is potentially associated with immunosuppression and with failure to induce a protective Th1 immune response; it may equally be predictive of fatal outcome in septic patients.

View Article and Find Full Text PDF

Objective: Premature atherosclerosis is a characteristic feature of systemic lupus erythematosus, a prototypic autoimmune disease. The principle cellular and molecular mechanisms which underlie such accelerated atherosclerosis are indeterminate.

Methods And Results: The pathophysiology of lupus-mediated atherogenesis was evaluated in a novel animal model involving transplantation of bone marrow cells from the lupus prone strain gld into Ldl-r(-/-) mice.

View Article and Find Full Text PDF