N-functionalized pyridinium frameworks derived from the three major vitamers of vitamin B6, pyridoxal, pyridoxamine and pyridoxine, have been screened computationally for consideration as negative electrode materials in aqueous organic flow batteries. A molecular database including the structure and the one-electron standard reduction potential of related pyridinium derivatives has been generated using a computational protocol that combines semiempirical and DFT quantum chemical methods. The predicted reduction potentials span a broad range for the investigated pyridinium frameworks, but pyridoxal derivatives, particularly those involving electron withdrawing substituents, have potentials compatible with the electrochemical stability window of aqueous electrolytes.
View Article and Find Full Text PDFEnantiopure halogenated molecules are of tremendous importance as synthetic intermediates in the construction of pharmaceuticals, fragrances, flavours, natural products, pesticides, and functional materials. Enantioselective halofunctionalizations remain poorly understood and generally applicable procedures are lacking. The applicability of chiral -chelating bis(pyridine)iodine(I) complexes in the development of substrate independent, catalytic enantioselective halofunctionalization has been explored herein.
View Article and Find Full Text PDFThe reactivity of halonium ions is conveniently modulated by three-center, four-electron halogen bonds. Such stabilized halonium complexes are valuable reagents for oxidations and halofunctionalization reactions. We report the first example of the stabilization of a halenium ion in a three-center, four-electron halogen bond with two oxygen ligands.
View Article and Find Full Text PDF