Breeding crops in a conventional way demands considerable time, space, inputs for selection, and the subsequent crossing of desirable plants. The duration of the seed-to-seed cycle is one of the crucial bottlenecks in the progress of plant research and breeding. In this context, speed breeding (SB), relying mainly on photoperiod extension, temperature control, and early seed harvest, has the potential to accelerate the rate of plant improvement.
View Article and Find Full Text PDFA better understanding of the structure and extent of genetic variability in a breeding population of a crop is essential for translating genetic diversity to genetic gain. We assessed the nature and pattern of genetic variability and differentiation in a panel of 100 winged-yam (Dioscorea alata) accessions using 24 phenotypic traits and 6,918 single nucleotide polymorphism (SNP) markers. Multivariate analysis for phenotypic variability indicated that all phenotypic traits assessed were useful in discriminating the yam clones and cultivars.
View Article and Find Full Text PDF