The efficient control of a large number of qubits is one of the most challenging aspects for practical quantum computing. Current approaches in solid-state quantum technology are based on brute-force methods, where each and every qubit requires at least one unique control line-an approach that will become unsustainable when scaling to the required millions of qubits. Here, inspired by random-access architectures in classical electronics, we introduce the shared control of semiconductor quantum dots to efficiently operate a two-dimensional crossbar array in planar germanium.
View Article and Find Full Text PDFThe prospect of building quantum circuits using advanced semiconductor manufacturing makes quantum dots an attractive platform for quantum information processing. Extensive studies of various materials have led to demonstrations of two-qubit logic in gallium arsenide, silicon and germanium. However, interconnecting larger numbers of qubits in semiconductor devices has remained a challenge.
View Article and Find Full Text PDF