Publications by authors named "Fliesler S"

Article Synopsis
  • * By analyzing data from the Million Veteran Program and other cohorts, the study identifies 63 genetic loci linked to AMD, including 30 that were previously unknown, highlighting significant differences in risk among various ancestries.
  • * The findings reveal that certain genetic risk factors, like those found in the CFH locus, have varying effects based on ancestry, suggesting that targeted therapies could be developed by considering these genetic differences.
View Article and Find Full Text PDF

Sterol homeostasis in mammalian cells and tissues involves balancing three fundamental processes: de novo sterol biosynthesis; sterol import (e.g., from blood-borne lipoproteins); and sterol export.

View Article and Find Full Text PDF

Modern advances in disease genetics have uncovered numerous modifier genes that play a role in the severity of disease expression. One such class of genetic conditions is known as inherited retinal degenerations (IRDs), a collection of retinal degenerative disorders caused by mutations in over 300 genes. A single missense mutation (K42E) in the gene encoding the enzyme dehydrodolichyl diphosphate synthase (DHDDS), which is required for protein N-glycosylation in all cells and tissues, causes -IRD (retinitis pigmentosa type 59 (RP59; OMIM #613861)).

View Article and Find Full Text PDF

Although cell type-specific Cre recombinase-expressing mouse lines are commonly used to generate conditional knockout of genes of interest, germline recombination and ectopic "leakiness" in Cre recombinase expression in non-specific cell types has been observed in several neuronal and glial-specific Cre lines. This often leads to inadvertent loss of conditional mouse lines, requiring rederivation. It is therefore imperative to be able to monitor and validate cell type-specific Cre recombinase-mediated gene editing.

View Article and Find Full Text PDF

The recent success in the treatment of hereditary retinal disease caused by defects in the RPE65 gene and the FDA approval of this treatment has established the importance of the study of animal models and the translational impact of these research findings [...

View Article and Find Full Text PDF

Traumatic brain injury (TBI) caused by acoustic blast overpressure (ABO) is frequently associated with chronic visual deficits in military personnel and civilians. In this study, we characterized retinal gliotic response in adult male rats following a single ABO exposure directed to one side of the head. Expression of gliosis markers and intermediate filaments was assessed at 48 h and 1 wk post-ABO exposure, in comparison to age-matched non-exposed control retina.

View Article and Find Full Text PDF

Mammalian Müller glia (MG) possess limited regenerative capacities. However, the intrinsic capacity of mammalian MG to transdifferentiate to generate mature neurons without transgenic manipulations remains speculative. Here we show that MAP4K4, MAP4K6 and MAP4K7, which are conserved Misshapen subfamily of ste20 kinases homologs, repress YAP activity in mammalian MG and therefore restrict their ability to be reprogrammed.

View Article and Find Full Text PDF

Retinitis pigmentosa (RP) defines a group of hereditary progressive rod-cone degenerations that exhibit a common phenotype caused by variants in over 70 genes. While most variants in the dehydrodolichyl diphosphate synthase (DHDDS) gene result in syndromic abnormalities, some variants cause non-syndromic RP (RP59). DHDDS encodes one subunit of the enzyme cis-prenyltransferase (CPT), which is required for the synthesis of dolichol (Dol), that is a necessary protein glycosylation cofactor.

View Article and Find Full Text PDF

De novo synthesis of dolichol (Dol) and dolichyl phosphate (Dol-P) is essential for protein glycosylation. Herein, we provide a brief overview of Dol and Dol-P synthesis and the maintenance of their cellular content. Retinal Dol metabolism and the requirement of Dol-linked oligosaccharide synthesis in the neural retina also are discussed.

View Article and Find Full Text PDF

Retinitis pigmentosa-59 (RP59) is a rare, recessive form of RP, caused by mutations in the gene encoding DHDDS (dehydrodolichyl diphosphate synthase). DHDDS forms a heterotetrameric complex with Nogo-B receptor (NgBR; gene ) to form a -prenyltransferase (CPT) enzyme complex, which is required for the synthesis of dolichol, which in turn is required for protein -glycosylation as well as other glycosylation reactions in eukaryotic cells. Herein, we review the published phenotypic characteristics of RP59 models extant, with an emphasis on their ocular phenotypes, based primarily upon knock-in of known RP59-associated DHDDS mutations as well as cell type- and tissue-specific knockout of alleles in mice.

View Article and Find Full Text PDF

Congenital disorders of glycosylation (CDG) are a heterogenous group of primarily autosomal recessive mendelian diseases caused by disruptions in the synthesis of lipid-linked oligosaccharides and their transfer to proteins. CDGs usually affect multiple organ systems and vary in presentation, even within families. There is currently no cure, and treatment is aimed at ameliorating symptoms and improving quality of life.

View Article and Find Full Text PDF

We describe the utility of a tandem-tagged autophagy reporter mouse model (CAG-RFP-EGFP-MAP1LC3B) in investigating basal macroautophagic/autophagic flux in the neural retina. Western blot, hybridization, immunohistochemistry, and confocal microscopy showed that CAG promoter-driven expression of RFP-EGFP-MAP1LC3B increased "cytosolic" RFP-EGFP-LC3B-I levels, whereas RFP-EGFP-LC3B-II decorates true phagosomes. We verified that the electroretinographic (ERG) responses of tandem-tagged LC3B mice were comparable to those of age-matched controls.

View Article and Find Full Text PDF

Blast-induced traumatic brain injury is the signature injury of modern military conflicts. To more fully understand the effects of blast exposure, we placed rats in different holder configurations, exposed them to blast overpressure, and assessed the degree of eye and brain injury. Anesthetized Long-Evans rats received blast exposures directed at the head (63 kPa, 195 dB-SPL) in either an "open holder" (head and neck exposed; n = 7), or an "enclosed holder" (window for blast exposure to eye; n = 15) and were compared to non-blast exposed (control) rats (n = 22).

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is the largest non-genetic, non-aging related risk factor for Alzheimer's disease (AD). We report here that TBI induces tau acetylation (ac-tau) at sites acetylated also in human AD brain. This is mediated by S-nitrosylated-GAPDH, which simultaneously inactivates Sirtuin1 deacetylase and activates p300/CBP acetyltransferase, increasing neuronal ac-tau.

View Article and Find Full Text PDF

The retinal pigment epithelium (RPE) provides vital metabolic support for retinal photoreceptor cells and is an important player in numerous retinal diseases. Gene manipulation in mice using the Cre-LoxP system is an invaluable tool for studying the genetic basis of these retinal diseases. However, existing RPE-targeted Cre mouse lines have critical limitations that restrict their reliability for studies of disease pathogenesis and treatment, including mosaic Cre expression, inducer-independent activity, off-target Cre expression, and intrinsic toxicity.

View Article and Find Full Text PDF

Cholesterol is a quantitatively and biologically significant constituent of all mammalian cell membrane, including those that comprise the retina. Retinal cholesterol homeostasis entails the interplay between de novo synthesis, uptake, intraretinal sterol transport, metabolism, and efflux. Defects in these complex processes are associated with several congenital and age-related disorders of the visual system.

View Article and Find Full Text PDF

Smith-Lemli-Opitz Syndrome (SLOS) results from mutations in the gene encoding the enzyme DHCR7, which catalyzes conversion of 7-dehydrocholesterol (7DHC) to cholesterol (CHOL). Rats treated with a DHCR7 inhibitor serve as a SLOS animal model, and exhibit progressive photoreceptor-specific cell death, with accumulation of 7DHC and oxidized sterols. To understand the basis of this cell type specificity, we performed transcriptomic analyses on a photoreceptor-derived cell line (661W), treating cells with two 7DHC-derived oxysterols, which accumulate in tissues and bodily fluids of SLOS patients and in the rat SLOS model, as well as with CHOL (negative control), and evaluated differentially expressed genes (DEGs) for each treatment.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Smith-Lemli-Opitz Syndrome (SLOS) is a developmental disorder (OMIM #270400) caused by autosomal recessive mutations in the Dhcr7 gene, which encodes the enzyme 3β-hydroxysterol-Δ7 reductase. SLOS patients present clinically with dysmorphology and neurological, behavioral, and cognitive defects, with characteristically elevated levels of 7-dehydrocholesterol (7-DHC) in all bodily tissues and fluids. Previous mouse models of SLOS have been hampered by postnatal lethality when Dhcr7 is knocked out globally, while a hypomorphic mouse model showed improvement in the biochemical phenotype with aging and did not manifest most other characteristic features of SLOS.

View Article and Find Full Text PDF

Cholesterol biosynthesis is a multi-step process involving several subcellular compartments, including peroxisomes. Cells adjust their sterol content by both transcriptional and post-transcriptional feedback regulation, for which sterol regulatory element-binding proteins (SREBPs) are essential; such homeostasis is dysregulated in peroxisome-deficient knockout mice. Here, we compared the regulation of cholesterol biosynthesis in Chinese hamster ovary (CHO-K1) cells and in three isogenic peroxisome-deficient CHO cell lines harboring gene mutations.

View Article and Find Full Text PDF