Publications by authors named "Flick-Smith H"

Tularemia is a zoonotic disease caused by the facultative intracellular gram-negative bacterium Francisella tularensis. F. tularensis has a very low infection dose by the aerosol route which can result in an acute, and potentially lethal, infection in humans.

View Article and Find Full Text PDF

Melioidosis is a disease that is difficult to treat due to the causative organism, being inherently antibiotic resistant and it having the ability to invade, survive, and replicate in an intracellular environment. Combination therapy approaches are routinely being evaluated in animal models with the aim of improving the level of protection and clearance of colonizing bacteria detected. In this study, a subunit vaccine layered with the antibiotic finafloxacin was evaluated against an inhalational infection with in Balb/c mice.

View Article and Find Full Text PDF

With the rise of antimicrobial resistance, novel ways to treat bacterial infections are required and the use of predatory bacteria may be one such approach. Bdellovibrio species have been shown in vitro to predate on a wide range of other Gram-negative bacteria, including CDC category A/B pathogens such as Yersinia pestis. The data reported here show that treatment of SKH-1 mice with Bdellovibrio bacteriovorus HD100 provided significant protection from a lethal challenge of Yersinia pestis CO92.

View Article and Find Full Text PDF

Disulfiram (DSF) can help treat alcohol dependency by inhibiting aldehyde dehydrogenase (ALDH). Genomic analysis revealed that Francisella tularensis, the causative agent of tularemia, has lost all but one ALDH-like domain and that this domain retains the target of DSF. In this study, minimum inhibitory concentration (MIC) assays demonstrated that both DSF and its primary metabolite diethyldithiocarbamate (DDC) have strong antimicrobial activity against F.

View Article and Find Full Text PDF

Francisella tularensis is an intracellular pathogen causing the disease tularemia, and an organism of concern to biodefence. There is no licensed vaccine available. Subunit approaches have failed to induce protection, which requires both humoral and cellular immune memory responses, and have been hampered by a lack of understanding as to which antigens are immunoprotective.

View Article and Find Full Text PDF

Bioluminescence imaging (BLI) enables real-time, noninvasive tracking of infection in vivo and longitudinal infection studies. In this study, a bioluminescent Francisella tularensis strain, SCHU S4-lux, was used to develop an inhalational infection model in BALB/c mice. Mice were infected intranasally, and the progression of infection was monitored in real time using BLI.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) recognise invading pathogens and mediate downstream immune signalling via Toll/IL-1 receptor (TIR) domains. TIR domain proteins (Tdps) have been identified in multiple pathogenic bacteria and have recently been implicated as negative regulators of host innate immune activation. A Tdp has been identified in Bacillus anthracis, the causative agent of anthrax.

View Article and Find Full Text PDF

Understanding the interactions between host and pathogen is important for the development and assessment of medical countermeasures to infectious agents, including potential biodefence pathogens such as Bacillus anthracis, Ebola virus, and Francisella tularensis. This review focuses on technological advances which allow this interaction to be studied in much greater detail. Namely, the use of "omic" technologies (next generation sequencing, DNA, and protein microarrays) for dissecting the underlying host response to infection at the molecular level; optical imaging techniques (flow cytometry and fluorescence microscopy) for assessing cellular responses to infection; and biophotonic imaging for visualising the infectious disease process.

View Article and Find Full Text PDF

Proline-rich antibacterial peptides protect experimental animals from bacterial challenge even if they are unable to kill the microorganisms in vitro. Their major in vivo modes of action are inhibition of bacterial protein folding and immunostimulation. Here we investigated whether the proline-rich antibacterial peptide dimer A3-APO was able to inhibit Bacillus cereus enterotoxin production in vitro and restrict the proliferation of lethal toxin-induced Bacillus anthracis replication in mouse macrophages.

View Article and Find Full Text PDF
Article Synopsis
  • The innate immune response is crucial for protecting mice from Francisella tularensis live vaccine strain (LVS) infections, particularly when triggered early.
  • The human cathelicidin LL-37, known for its immunomodulatory properties, shows promise as a post-exposure therapy against LVS, enhancing immune responses and increasing survival time in mice.
  • While LL-37 administration improves immune activity and delays death after LVS exposure, its protective effects are temporary, suggesting that a longer treatment duration may be more effective for combating the infection.
View Article and Find Full Text PDF

The Toll/interleukin (IL)-1 receptor (TIR) domain is an essential component of eukaryotic innate immune signalling pathways. Interaction between TIR domains present in Toll-like receptors and associated adaptors initiates and propagates an immune signalling cascade. Proteins containing TIR domains have also been discovered in bacteria.

View Article and Find Full Text PDF

In this paper we evaluate the role of human γδ T cells in control of Francisella tularensis infection. Using an in vitro model of infection, a reduction in bacterial numbers was detected in the presence of human γδ T cells for both attenuated LVS and virulent SCHU S4 strains of F. tularensis.

View Article and Find Full Text PDF

Deposition of Bacillus anthracis endospores within either the lungs or nasal passages of A/J mice after aerosol exposure was influenced by different particle sized aerosols and resulted in different infection kinetics. The infection resulting from the inhalation of endospores within a 12 μm particle aerosol was prolonged compared to that from a 1 μm particle aerosol with a mean time-to-death of 161 ± 16.1 h and 101.

View Article and Find Full Text PDF

Studies have confirmed the key role of Bacillus anthracis protective antigen (PA) in the US and UK human anthrax vaccines. However, given the tripartite nature of the toxin, other components, including lethal factor (LF), are also likely to contribute to protection. We examined the antibody and T cell responses to PA and LF in human volunteers immunized with the UK anthrax vaccine (AVP).

View Article and Find Full Text PDF

Yersinia pestis is the causative agent of plague. Naturally occurring cases of the disease and the potential use of Y. pestis as a bioweapon fuel the need for efficacious vaccines.

View Article and Find Full Text PDF
Article Synopsis
  • The unpredictability of bioterrorism and lack of real-time detection emphasize the need for effective treatments against Bacillus anthracis infections.
  • Researchers isolated two fully human monoclonal antibodies, IQNPA and IQNLF, designed to neutralize components of anthrax toxin, showing strong protection in animal models.
  • Administering these antibodies can promote both immediate protection against anthrax and the development of the body's own immune response without interference.
View Article and Find Full Text PDF

Stimulation of protective immune responses against intracellular pathogens is difficult to achieve using non-replicating vaccines. BALB/c mice immunized by intramuscular injection with killed Francisella tularensis (live vaccine strain) adjuvanted with preformed immune stimulating complexes admixed with CpG, were protected when systemically challenged with a highly virulent strain of F. tularensis (Schu S4).

View Article and Find Full Text PDF

The rF1+rV candidate sub-unit vaccine for plague, formulated by adsorption to alhydrogel, has been demonstrated to be immunogenic in the cynomolgus macaque in a clinically relevant dose-range (5-40 microg of each sub-unit) and regimen. Following two doses of vaccine, a specific IgG titre developed in a dose-related manner with predominance of the IgG1/IgG2 isotypes. Groups of macaques receiving only a single dose of vaccine at the 40 microg dose-level had a significantly reduced peak IgG response and faster decline to baseline.

View Article and Find Full Text PDF

Protective immunity to anthrax can be achieved by antibodies raised against the secreted protective antigen (PA) and this forms the basis of the current acellular vaccines for human use. Bacillus subtilis spores have previously been used for delivery of heterologous antigens by the oral and nasal routes and their intrinsic heat-stability make them attractive vaccine vehicles. In this study we have expressed PA, or segments of PA, in B.

View Article and Find Full Text PDF

Caf1, a chaperone-usher protein from Yersinia pestis, is a major protective antigen in the development of subunit vaccines against plague. However, recombinant Caf1 forms polymers of indeterminate size. We report the conversion of Caf1 from a polymer to a monomer by circular permutation of the gene.

View Article and Find Full Text PDF

We mapped mouse CD4 T-cell epitopes located in three structurally distinct regions of the V antigen of Yersinia pestis. T-cell hybridomas specific for epitopes from each region were generated to study the mechanisms of processing and presentation of V antigen by bone-marrow-derived macrophages. All three epitopes required uptake and/or processing from V antigen as well as presentation to T cells by newly synthesized major histocompatibility complex (MHC) class II molecules over a time period of 3-4 hr.

View Article and Find Full Text PDF

Immunization with a recombinant form of the protective antigen (rPA) from Bacillus anthracis has been carried out with rhesus macaques. Rhesus macaques immunized with 25 mug or more of B. subtilis-expressed rPA bound to alhydrogel had a significantly increased immunoglobulin G (IgG) response to rPA compared with macaques receiving the existing licensed vaccine from the United Kingdom (anthrax vaccine precipitated [AVP]), although the isotype profile was unchanged, with bias towards the IgG1 and IgG2 subclasses.

View Article and Find Full Text PDF

The human immune response to a new recombinant plague vaccine, comprising recombinant F1 (rF1) and rV antigens, has been assessed during a phase 1 safety and immunogenicity trial in healthy volunteers. All the subjects produced specific immunoglobulin G (IgG) in serum after the priming dose, which peaked in value after the booster dose (day 21), with the exception of one individual in the lowest dose level group, who responded to rF1 only. Three subjects, found to have an anti-rV titer at screening, were excluded from the overall analysis.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the use of VP22 protein fused to the Protective Antigen (PA) from Bacillus anthracis to enhance immune responses in DNA vaccines, building on past research that showed benefits of VP22 fusion.* -
  • Researchers created two vaccine constructs with VP22 linked to different ends of the PA protein and tested their effectiveness through gene gun immunization in A/J mice.* -
  • The results indicated that there was no significant improvement in antibodies or protective immunity against anthrax when using the VP22-fused vaccines compared to standard PA vaccines.*
View Article and Find Full Text PDF

In order to evaluate the immunogenicity and protective efficacy of anthrax vaccine candidates a suitable small animal model is required. The inbred A/J strain of mouse has been selected as a potential model, and its immune response to immunisation with recombinant protective antigen (rPA) vaccine characterised, by assessment of rPA specific antibody production, and protection against injected challenge, with the unencapsulated STI strain of Bacillus anthracis. Studies were conducted to determine the time required post immunisation to develop a protective immune response, to define the minimum protective dose of vaccine required and to assess the long-term immune response to immunisation.

View Article and Find Full Text PDF