Photonic crystals (PCs) are promising tools for label-free sensing in drug discovery screening, diagnostics, and analysis of ligand-receptor interactions. Imaging of PC surface modes has emerged as a novel approach to the detection of multiple binding events at the sensor surface. PC surface modification and decoration with recognition units yield an interface providing the highly sensitive detection of cancer biomarkers, antibodies, and oligonucleotides.
View Article and Find Full Text PDFRAD51 is a pivotal protein of the homologous recombination DNA repair pathway, and is overexpressed in some cancer cells, disrupting then the efficiency of cancer-treatments. The development of RAD51 inhibitors appears as a promising solution to restore these cancer cells sensitization to radio- or chemotherapy. From a small molecule identified as a modulator of RAD51, the 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), two series of analogues with small or bulky substituents on the aromatic parts of the stilbene moiety were prepared for a structure-activity relationship study.
View Article and Find Full Text PDFHigh-throughput protein assays are crucial for modern diagnostics, drug discovery, proteomics, and other fields of biology and medicine. It allows simultaneous detection of hundreds of analytes and miniaturization of both fabrication and analytical procedures. Photonic crystal surface mode (PC SM) imaging is an effective alternative to surface plasmon resonance (SPR) imaging used in conventional gold-coated, label-free biosensors.
View Article and Find Full Text PDFThe role of intestinal bacterial microbiota has been described as key in the pathophysiology of Crohn's disease (CD). CD is characterized by frequent relapses after periods of remission which are not entirely understood. In this paper, we investigate whether the heterogeneity in microbiota profiles in CD patients could be a suitable predictor for these relapses.
View Article and Find Full Text PDFRAD51 is the central protein in DNA repair by homologous recombination (HR), involved in several steps of this process. It is shown that overexpression of the RAD51 protein is correlated with increased survival of cancer cells to cancer treatments. For the past decade, RAD51 overexpression-mediated resistance has justified the development of targeted inhibitors.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
December 2021
Homologous recombination (HR) is involved in repairing DNA double-strand breaks (DSB), the most harmful for the cell. Regulating HR is essential for maintaining genomic stability. In many forms of cancer, overactivation of HR increases tumor resistance to DNA-damaging treatments.
View Article and Find Full Text PDFVery little is known about chemical interactions between fungi and their mollusc host within marine environments. Here, we investigated the metabolome of a MMS417 strain isolated from the blue mussel collected on the Loire estuary, France. Following the OSMAC approach with the use of 14 culture media, the effect of salinity and of a mussel-derived medium on the metabolic expression were analysed using HPLC-UV/DAD-HRMS/MS.
View Article and Find Full Text PDFThis study evaluated such as exposure to ethinylestradiol during the prenatal (18th-22nd day) and pubertal (42nd-49th day) periods acts on the male ventral prostate and female prostate of 12-month old gerbils. We performed the analysis to serum hormone levels for estradiol and testosterone. The prostates were submitted to morphometric and immunohistochemical analyses.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
January 2021
Receptor Tyrosine Kinases (RTK) are an important family involved in numerous signaling pathways essential for proliferation, cell survival, transcription or cell-cycle regulation. Their role and involvement in cancer cell survival have been widely described in the literature, and are generally associated with overexpression and/or excessive activity in the cancer pathology. Because of these characteristics, RTKs are relevant targets in the fight against cancer.
View Article and Find Full Text PDFFucoxanthin is a well-known carotenoid of the xanthophyll family, mainly produced by marine organisms such as the macroalgae of the fucus genus or microalgae such as . Fucoxanthin has antioxidant and anti-inflammatory properties but also several anticancer effects. Fucoxanthin induces cell growth arrest, apoptosis, and/or autophagy in several cancer cell lines as well as in animal models of cancer.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
December 2020
Background: DNA dependent Protein Kinase (DNA-PK) is an heterotrimeric complex regulating the Non Homologous End Joining (NHEJ) double strand break (DSB) repair pathway. The activity of its catalytic subunit (DNA-PKcs) is regulated by multiple phosphorylations, like the Ser2056 one that impacts DSB end processing and telomeres integrity. O-GlcNAcylation is a post translational modification (PTM) closely related to phosphorylation and its implication in the modulation of DNA-PKcs activity during the DNA Damage Response (DDR) is unknown.
View Article and Find Full Text PDFAntibody microarrays have become a powerful tool in multiplexed immunoassay technologies. The advantage of microarray technology is the possibility of rapid analysis of multiple targets in a single sample with a high sensitivity, which makes them ideal for high throughput screening. Usually these microarrays contain biological recognition molecules, such as full-size antibodies, antigen-binding fragments, and single-domain antibodies, and a label for detection.
View Article and Find Full Text PDFThis article discloses a new horizon for the application of peroxides in medical chemistry. Stable cyclic peroxides are demonstrated to have cytotoxic activity against cancer cells; in addition a mechanism of cytotoxic action is proposed. Synthetic bridged 1,2,4,5-tetraoxanes and ozonides were effective against HepG2 cancer cells and some ozonides selectively targeted liver cancer cells (the selectivity indexes for compounds 11 b and 12 a are 8 and 5, respectively).
View Article and Find Full Text PDFThe catalyst H PMo Mo O supported on SiO was developed for peroxidation of 1,3- and 1,5-diketones with hydrogen peroxide with the formation of bridged 1,2,4,5-tetraoxanes and bridged 1,2,4-trioxolanes (ozonides) with high yield based on isolated products (up to 86 and 90 %, respectively) under heterogeneous conditions. Synthesis of peroxides under heterogeneous conditions is a rare process and represents a challenge for this field of chemistry, because peroxides tend to decompose on the surface of a catalyst . A new class of antifungal agents for crop protection, that is, cyclic peroxides: bridged 1,2,4,5-tetraoxanes and bridged ozonides, was discovered.
View Article and Find Full Text PDFRad51 is a key protein in DNA repair by homologous recombination and an important target for development of drugs in cancer therapy. 4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) has been used in clinic during the past 30 years as an inhibitor of anion transporters and channels. Recently DIDS has been demonstrated to affect Rad51-mediated homologous pairing and strand exchange, key processes in homologous recombination.
View Article and Find Full Text PDFGenomic instability through deregulation of DNA repair pathways can initiate cancer and subsequently result in resistance to chemo and radiotherapy. Understanding these biological mechanisms is therefore essential to overcome cancer. RAD51 is the central protein of the Homologous Recombination (HR) DNA repair pathway, which leads to faithful DNA repair of DSBs.
View Article and Find Full Text PDFTherapeutic efficacy against cancer is often based on a variety of DNA lesions, including DNA double-strand breaks (DSBs) which are repaired by homologous recombination and non-homologous end joining (NHEJ) pathways. In the past decade, the functions of the DNA repair proteins have been described as a potential mechanism of resistance in tumor cells. Therefore, the DNA repair proteins have become targets to improve the efficacy of anticancer therapy.
View Article and Find Full Text PDFDisulfonic stilbene (DS) derivatives are a member of the large family of compounds widely employed in medicine and biology as modulators for membrane transporters or inhibitors of a protein involved in DNA repair. They constitute interesting compounds that have not yet been investigated within the bioavailability framework. No crystallographic structures exist involving such compounds embedded in the most common drug carrier, human serum albumin (HSA).
View Article and Find Full Text PDFThe field of optical bioimaging has considerably flourished with the advent of sophisticated microscopy techniques and ultra-bright fluorescent tools. Fluorescent organic nanoparticles (FONs) have thus recently appeared as very attractive labels for their high payload, absence of cytotoxicity and eventual biodegradation. Nevertheless, their bioconjugation to target specific receptors with high imaging contrast is scarcely performed.
View Article and Find Full Text PDFHomologous Recombination enables faithful repair of the deleterious double strand breaks of DNA. This pathway relies on Rad51 to catalyze homologous DNA strand exchange. Rad51 is known to be phosphorylated in a sequential manner on Y315 and then on Y54, but the effect of such phosphorylation on Rad51 function remains poorly understood.
View Article and Find Full Text PDFKoinobiont parasitoid insects, which maintain intimate and long-term relationships with their arthropod hosts, constitute an association of ectothermic organisms that is particularly sensitive to temperature variations. Because temperature shows pronounced natural daily fluctuations, we examined if experiments based on a constant temperature range can mask the real effects of the thermal regime on host-parasitoid interactions. The effects of two fluctuating thermal regimes on several developmental parameters of the Drosophila larval parasitoid Leptopilina boulardi were analyzed in this study.
View Article and Find Full Text PDFHigh-density nanoarchitectures, endowed with simultaneous fluorescence and contrast properties for MRI and TEM imaging, have been obtained using a simple self-assembling strategy based on supramolecular interactions between non-doped fluorescent organic nanoparticles (FON) and superparamagnetic nanoparticles. In this way, a high-payload core-shell structure FON@mag has been obtained, protecting the hydrophobic fluorophores from the surroundings as well as from emission quenching by the shell of magnetic nanoparticles. Compared to isolated nanoparticles, maghemite nanoparticles self-assembled as an external shell create large inhomogeneous magnetic field, which causes enhanced transverse relaxivity and exacerbated MRI contrast.
View Article and Find Full Text PDFThe expression and activity of DNA-dependent protein kinase (DNA-PK) is related to DNA repair status in the response of cells to exogenous and endogenous factors. Recent studies indicate that Epidermal Growth Factor Receptor (EGFR) is involved in modulating DNA-PK. It has been shown that a compound 4-nitro-7-[(1-oxidopyridin-2-yl)sulfanyl]-2,1,3-benzoxadiazole (NSC), bearing a nitro-benzoxadiazole (NBD) scaffold, enhances tyrosine phosphorylation of EGFR and triggers downstream signaling pathways.
View Article and Find Full Text PDF4,4'-Diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) is a well-known ion-exchange inhibitor targeting cardiac functions and indirectly impeding both radio- and chemo-resistance. A joint computational and experimental study is presented to provide deeper insights into DIDS and other members of this family of compounds. To this end, we applied state-of-the-art density functional theory (DFT) and time-dependent DFT methods, in addition to measuring the optical properties.
View Article and Find Full Text PDF