Publications by authors named "Fleur Kelpin"

Summary: Extensive human health data from cohort studies, national registries, and biobanks can reveal lifecourse risk factors impacting health. Combining these sources offers increased statistical power, rare outcome detection, replication of findings, and extended study periods. Traditionally, this required data transfer to a central location or separate partner analyses with pooled summary statistics, posing ethical, legal, and time constraints.

View Article and Find Full Text PDF

Motivation: The volume and complexity of biological data increases rapidly. Many clinical professionals and biomedical researchers without a bioinformatics background are generating big '-omics' data, but do not always have the tools to manage, process or publicly share these data.

Results: Here we present MOLGENIS Research, an open-source web-application to collect, manage, analyze, visualize and share large and complex biomedical datasets, without the need for advanced bioinformatics skills.

View Article and Find Full Text PDF

Motivation: Biobanks are indispensable for large-scale genetic/epidemiological studies, yet it remains difficult for researchers to determine which biobanks contain data matching their research questions.

Results: To overcome this, we developed a new matching algorithm that identifies pairs of related data elements between biobanks and research variables with high precision and recall. It integrates lexical comparison, Unified Medical Language System ontology tagging and semantic query expansion.

View Article and Find Full Text PDF

Motivation: While the size and number of biobanks, patient registries and other data collections are increasing, biomedical researchers still often need to pool data for statistical power, a task that requires time-intensive retrospective integration.

Results: To address this challenge, we developed MOLGENIS/connect, a semi-automatic system to find, match and pool data from different sources. The system shortlists relevant source attributes from thousands of candidates using ontology-based query expansion to overcome variations in terminology.

View Article and Find Full Text PDF

There is an urgent need to standardize the semantics of biomedical data values, such as phenotypes, to enable comparative and integrative analyses. However, it is unlikely that all studies will use the same data collection protocols. As a result, retrospective standardization is often required, which involves matching of original (unstructured or locally coded) data to widely used coding or ontology systems such as SNOMED CT (clinical terms), ICD-10 (International Classification of Disease) and HPO (Human Phenotype Ontology).

View Article and Find Full Text PDF

In their natural environment microorganisms encounter changes in substrate availability, involving either nutrient concentrations or nutrient types. They have to adapt to the new conditions in order to survive. We present a model for slow microbial adaptation, involving the synthesis of new enzymes, in response to changes in the availability of substitutable substrates.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session60kb2d51bgvpn9s12b6j0s90fj3rh4q1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once