Background: TRPC5 proteins form plasma membrane cation channels and are expressed in the nervous and cardiovascular systems. TRPC5 activation leads to cell depolarization and increases neuronal excitability, whereas a homologous TRPC1 inhibits TRPC5 function via heteromerization. The mechanism underlying the inhibitory effect of TRPC1 in TRPC5/TRPC1 heteromers remains unknown.
View Article and Find Full Text PDFDorzolamide (DZD), a Carbonic anhydrase (CA) inhibitor clinically used to lower intraocular pressure, exhibits anti-inflammatory effects owing to the drug's ability to inhibit the TIR domain-containing adaptor protein (TIRAP)-mediated signalling in macrophages. Here, we investigated whether DZD intermediates also demonstrate any anti-inflammatory property like DZD but with a reduced inhibition of CA. We found that several intermediates of DZD show increased binding to TIRAP at the common interface of kinases, such as Protein kinase C-delta (PKCδ) and Bruton's tyrosine kinase (BTK).
View Article and Find Full Text PDFTo optimize the clinical approach to non-convulsive status epilepticus (NCSE), it is essential to gain insight into its long-term effects on cognition and behaviors. Here, we investigated limbic NCSE-induced hippocampal injury and behavioral deficits in peri-adolescent rats. NCSE was induced in P43 Sprague Dawleyrats with intrahippocampal subconvulsive doses of kainic acid (NCSE group, n = 14) under continuous epidural cortical electroencephalography (EEG).
View Article and Find Full Text PDFChronic pain impacts more than one in five adults in the United States (US) and the costs associated with the condition amount to hundreds of billions of dollars annually. Despite the tremendous impact of chronic pain in the US and worldwide, the standard of care for diagnosis depends on subjective self-reporting of pain state, with no effective objective assessment procedure available. This study investigated the application of signal processing and machine learning to electroencephalography (EEG) data for the development of classification algorithms capable of differentiating subjects in pain from pain free subjects.
View Article and Find Full Text PDFAdvances in genetics led to the identification of hundreds of epilepsy-related genes, some of which are treatable with etiology-specific interventions. However, the diagnostic yield of next-generation sequencing (NGS) in unexplained epilepsy is highly variable (10-50%). We sought to determine the diagnostic yield and clinical utility of NGS in children with unexplained epilepsy that is accompanied by neurodevelopmental delays and/or is medically intractable.
View Article and Find Full Text PDFAging is associated with systemic chronic, low-grade inflammation, termed 'inflammaging'. This pattern of inflammation is multifactorial and is driven by numerous inflammatory pathways, including the inflammasome. However, most studies to date have examined changes in the transcriptomes that are associated with aging and inflammaging, despite the fact that inflammasome activation is driven by a series of post-translational activation steps, culminating in the cleavage and activation of caspase-1.
View Article and Find Full Text PDFIntroduction: Post-traumatic headache (PTH) is a common consequence of mild traumatic brain injury (mTBI) that can severely impact an individual's quality of life and rehabilitation. However, the underlying neuropathogenesis mechanisms contributing to PTH are still poorly understood. This study utilized diffusion tensor imaging (DTI) to detect microstructural alterations in the brains of mTBI participants with or at risk of developing PTH.
View Article and Find Full Text PDFBackground: Pain is common among patients with heart failure but has not been examined with short-term discharge outcomes. The purpose was to examine whether pain at discharge predicts return to community status and 90-day mortality among hospitalized patients with heart failure.
Methods: Data from medical records of 2169 patients hospitalized with heart failure were analyzed in this retrospective cohort study.
Several proteins play critical roles in vulnerability or resistance to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and frontotemporal dementia (FTD). Regulation of these proteins is critical to maintaining healthy neurohomeostasis. In addition to transcription factors regulating gene transcription and microRNAs regulating mRNA translation, natural antisense transcripts (NATs) regulate mRNA levels, splicing, and translation.
View Article and Find Full Text PDFNeurovascular coupling (NVC) is the mechanism that drives the neurovascular response to neural activation, and NVC dysfunction has been implicated in various neurologic diseases. NVC is driven by (1) nonmetabolic feedforward mechanisms that are mediated by various signaling pathways and (2) metabolic feedback mechanisms that involve metabolic factors. However, the interplay between these feedback and feedforward mechanisms remains unresolved.
View Article and Find Full Text PDFPurpose Of Review: Fractures are a prominent form of traumatic injury and shall continue to be for the foreseeable future. While the inflammatory response and the cells of the bone marrow microenvironment play significant roles in fracture healing, the nervous system is also an important player in regulating bone healing.
Recent Findings: Considerable evidence demonstrates a role for nervous system regulation of fracture healing in a setting of traumatic injury to the brain.
Purpose Of Review: The traditionally understated role of neural regulation in fracture healing is gaining prominence, as recent findings underscore the peripheral nervous system's critical contribution to bone repair. Indeed, it is becoming more evident that the nervous system modulates every stage of fracture healing, from the onset of inflammation to repair and eventual remodeling.
Recent Findings: Essential to this process are neurotrophins and neuropeptides, such as substance P, calcitonin gene-related peptide, and neuropeptide Y.
Curr Osteoporos Rep
February 2024
Purpose Of Review: Despite advances in orthopedics, there remains a need for therapeutics to hasten fracture healing. However, little focus is given to the role the nervous system plays in regulating fracture healing. This paucity of information has led to an incomplete understanding of fracture healing and has limited the development of fracture therapies that integrate the importance of the nervous system.
View Article and Find Full Text PDFPurpose Of Review: Three review articles have been written that discuss the roles of the central and peripheral nervous systems in fracture healing. While content among the articles is overlapping, there is a key difference between them: the use of artificial intelligence (AI). In one paper, the first draft was written solely by humans.
View Article and Find Full Text PDFIntroduction: There are 1.5 million new mild traumatic brain injuries (mTBI) annually in the US, with many of the injured experiencing long-term consequences lasting months after the injury. Although the post injury mechanisms are not well understood, current knowledge indicates peripheral immune system activation as a causal link between mTBI and long-term side effects.
View Article and Find Full Text PDFBackground: Individuals who have experienced mild traumatic brain injuries (mTBIs) suffer from several comorbidities, including chronic pain. Despite extensive studies investigating the underlying mechanisms of mTBI-associated chronic pain, the role of inflammation in long-term pain after mTBIs is not fully elucidated. Given the shifting dynamics of inflammation, it is important to understand the spatial-longitudinal changes in inflammatory processes following mTBIs and their effects on TBI-related pain.
View Article and Find Full Text PDFMild traumatic brain injury is an insidious event whereby the initial injury leads to ongoing secondary neuro- and systemic inflammation through various cellular pathways lasting days to months after injury. Here, we investigated the impact of repeated mild traumatic brain injury (rmTBI) and the resultant systemic immune response in male C57B6 mice using flow cytometric methodology on white blood cells (WBCs) derived from the blood and spleen. Isolated mRNA derived from spleens and brains of rmTBI mice was assayed for changes in gene expression at one day, one week, and one month following the injury paradigm.
View Article and Find Full Text PDFGadopentetic acid and gadodiamide are paramagnetic gadolinium-based contrast agents (GBCAs) that are routinely used for dynamic contrast-enhanced magnetic resonance imaging (MRI) to monitor disease progression in cancer patients. However, growing evidence indicates that repeated administration of GBCAs may lead to gadolinium (III) cation accumulation in the cortical bone tissue, skin, basal ganglia, and cerebellum, potentially leading to a subsequent slow long-term discharge of Gd. Gd is a known activator of the TRPC5 channel that is implicated in breast cancer's resistance to chemotherapy.
View Article and Find Full Text PDFBacterial colonization of open wounds is common, and patients with infected wounds often report significantly elevated pain sensitivity at the wound site. Transient Receptor Potential Vanilloid Type 1 (TRPV1) channels are known to play an important role in pain signaling and may be sensitized under pro-inflammatory conditions. Bacterial membrane components, such as phosphoethanolamine dihydroceramide (PEDHC), phosphoglycerol dihydroceramide (PGDHC), and lipopolysaccharide (LPS), are released in the environment from the Gram-negative bacteria of the Bacteroidetes species colonizing the infected wounds.
View Article and Find Full Text PDFRecent research suggests that mild traumatic brain injury (TBI) may exert deleterious effects on endogenous pain modulatory function, potentially underlying the elevated risk for persistent headaches following injury. Accumulating research also shows race differences in clinical and experimental pain, with African Americans (AA) generally reporting more severe pain, worse pain modulation, and greater pain sensitivity compared with Caucasians. However, race differences in pain-related outcomes following mild TBI have rarely been studied.
View Article and Find Full Text PDFProgress in bone fracture repair research has been made possible due to the development of reproducible models of fracture in rodents with more clinically relevant fracture fixation, where there is considerably better assessment of the factors that affect fracture healing and/or novel therapeutics. However, chronic or persistent pain is one of the worst, longest-lasting and most difficult symptoms to manage after fracture repair, and an ongoing challenge remains for animal welfare as limited information exists regarding pain scoring and management in these rodent fracture models. This failure of adequate pre-clinical pain assessment following osteotomy in the rodent population may not only subject the animal to severe pain states but may also affect the outcome of the bone healing study.
View Article and Find Full Text PDFBackground: Rubus occidentalis, also known as black raspberry, contains several bioactive components that vary depending on the maturity of the fruit. The goal of this study was to evaluate the efficacy of immature Rubus occidentalis extract(iROE) on acid-induced hyperalgesia, investigate the mechanism involved, and compare the antihyperalgesic effect of immature and mature ROEs.
Methods: In adult male Sprague-Dawley rats, chronic muscle pain was induced via two injections of acidic saline into one gastrocnemius muscle.