The distinct anatomic environment in which adipose tissues arise during organogenesis is a principle determinant of their adult expansion capacity. Metabolic disease results from a deficiency in hyperplastic adipose expansion within the dermal/subcutaneous depot; thus, understanding the embryonic origins of dermal adipose is imperative. Using single-cell transcriptomics throughout murine embryogenesis, we characterized cell populations, including cells, that regulate the development of dermal white adipose tissue (dWAT).
View Article and Find Full Text PDFAdipose tissue (AT) expands through both hyperplasia and hypertrophy. During adipogenesis, adipose stromal and progenitor cells (ASPC) proliferate and then accumulate lipids, influenced by the local AT microenvironment. Increased adipogenic capacity is desirable as it relates to metabolic health, especially in transition dairy cows where excess free fatty acids in circulation can compromise metabolic and immune health.
View Article and Find Full Text PDFAlterations of the extracellular matrix contribute to adipose tissue dysfunction in metabolic disease. We studied the role of matrix density in regulating human adipocyte phenotype in a tunable hydrogel culture system. Lipid accumulation was maximal in intermediate hydrogel density of 5 weight %, relative to 3% and 10%.
View Article and Find Full Text PDFObesity-associated type 2 diabetes (DM) leads to adipose tissue dysfunction. Lumican is a proteoglycan implicated in obesity, insulin resistance (IR), and adipocyte dysfunction. Using human visceral adipose tissue (VAT) from subjects with and without DM, we studied lumican effects on adipocyte function.
View Article and Find Full Text PDFIncreased adipose tissue macrophages (ATMs) correlate with metabolic dysfunction in humans and are causal in development of insulin resistance in mice. Recent bulk and single-cell transcriptomics studies reveal a wide spectrum of gene expression signatures possible for macrophages that depends on context, but the signatures of human ATM subtypes are not well defined in obesity and diabetes. We profiled 3 prominent ATM subtypes from human adipose tissue in obesity and determined their relationship to type 2 diabetes.
View Article and Find Full Text PDFObesity-related type 2 diabetes (DM) is a major public health concern. Adipose tissue metabolic dysfunction, including fibrosis, plays a central role in DM pathogenesis. Obesity is associated with changes in adipose tissue extracellular matrix (ECM), but the impact of these changes on adipose tissue mechanics and their role in metabolic disease is poorly defined.
View Article and Find Full Text PDFDysfunctional adipose tissue plays a central role in the pathogenesis of the obesity-related metabolic disease, including type 2 diabetes. Targeting adipose tissue using biopolymer implants is a novel therapeutic approach for metabolic disease. We transplanted porous poly(lactide-co-glycolide) (PLG) implants coated with human interleukin-4 (hIL-4)-expressing lentivirus into epididymal white adipose tissue (eWAT) of mice fed a high-fat diet.
View Article and Find Full Text PDFSubcutaneous (SAT) and visceral (VAT) adipose tissues have distinct metabolic phenotypes. We hypothesized that the extracellular matrix (ECM) regulates depot-specific differences in adipocyte metabolic function in murine obesity. VAT and SAT preadipocytes from lean or obese mice were subject to adipogenic differentiation in standard 2D culture on plastic tissue culture plates or in 3D culture in ECM, followed by metabolic profiling.
View Article and Find Full Text PDFObjective: Expansion of visceral adipose tissue (VAT) and metabolic inflammation are consequences of obesity and associated with type 2 diabetes (T2DM). Metabolically activated adipose tissue macrophages (ATMs) undergo qualitative and quantitative changes that influence their inflammatory responses. How these cells contribute to insulin resistance (IR) in humans is not well understood.
View Article and Find Full Text PDFBackground: Obesity-induced chronic inflammation and fibrosis in adipose tissue contributes to the progression of type 2 diabetes mellitus (DM). While fibrosis is known to induce mechanical stiffening of numerous tissue types, it is unknown whether DM is associated with alterations in adipose tissue mechanical properties.
Objective: The purpose of this study was to investigate whether DM is associated with differences in bulk viscoelastic properties of adipose tissue from diabetic (DM) and non-diabetic (NDM) obese subjects.
The adipose tissue extracellular matrix (ECM) regulates adipocyte cellular metabolism and is altered in obesity and type 2 diabetes, but mechanisms underlying ECM-adipocyte metabolic crosstalk are poorly defined. Advanced glycation end-product (AGE) formation is increased in diabetes. AGE alter tissue function via direct effects on ECM and by binding scavenger receptors on multiple cell types and signaling through Rho GTPases.
View Article and Find Full Text PDFThe extracellular matrix (ECM) plays a central role in regulating tissue homeostasis, engaging in crosstalk with cells and regulating multiple aspects of cellular function. The ECM plays a particularly important role in adipose tissue function in obesity, and alterations in adipose tissue ECM deposition and composition are associated with metabolic disease in mice and humans. Tractable in vitro models that permit dissection of the roles of the ECM and cells in contributing to global tissue phenotype are sparse.
View Article and Find Full Text PDFPredictors of weight loss responses are not well-defined. We hypothesized that adipose tissue phenotypic features related to remodeling would be associated with bariatric surgery weight loss responses. Visceral and subcutaneous adipose tissues collected from patients during bariatric surgery were studied with flow cytometry, immunohistochemistry, and QRTPCR, and results correlated with weight loss outcomes.
View Article and Find Full Text PDFContext: The role of the extracellular matrix (ECM) in regulating adipocyte metabolism in the context of metabolic disease is poorly defined.
Objective: The objective of this study was to define the metabolic phenotype of adipocytes associated with human diabetes (DM) and the role of the ECM in regulating adipocyte metabolism.
Design: Adipose tissues from obese patients were studied in standard 2-dimensional (2D) cell culture and an in vitro model of decellularized adipose tissue ECM repopulated with human adipocytes, and results were correlated with DM status.
Adipocytes promote progression of multiple cancers, but their role in pancreatic intraepithelial neoplasia (PanIN) and ductal adenocarcinoma (PDAC) is poorly defined. Nutrient transfer is a mechanism underlying stromal cell-cancer crosstalk. We studied the role of adipocytes in regulating PanIN and PDAC cell proliferation with a focus on glutamine metabolism.
View Article and Find Full Text PDFObjective: The relationship between adipose tissue fibrosis, adipocyte hypertrophy, and preadipocyte hyperplasia in the context of obesity and the correlation of these tissue-based phenomena with systemic metabolic disease are poorly defined. The goal of this study was to clarify the relationship between adipose tissue fibrosis, adipocyte hypertrophy, and preadipocyte hyperplasia in human obesity and determine the correlation of these adipose-tissue based phenomena with diabetes.
Methods: Visceral and subcutaneous adipose tissues from humans with obesity collected during bariatric surgery were studied with QRTPCR, immunohistochemistry, and flow cytometry for expression of collagens and fibrosis-related proteins, adipocyte size, and preadipocyte frequency.
J Comp Physiol Psychol
June 1966