Publications by authors named "Flenniken A"

Mouse is the mammalian model of choice to study human health and disease due to its size, ease of breeding and the natural occurrence of conditions mimicking human pathology. Here we design and validate multiple reaction monitoring mass spectrometry (MRM-MS) assays for quantitation of 2118 unique proteins in 20 murine tissues and organs. We provide open access to technical aspects of these assays to enable their implementation in other laboratories, and demonstrate their suitability for proteomic profiling in mice by measuring normal protein abundances in tissues from three mouse strains: C57BL/6NCrl, NOD/SCID, and BALB/cAnNCrl.

View Article and Find Full Text PDF

The vacuolar H-ATPase is a multisubunit enzyme which plays an essential role in the acidification and functions of lysosomes, endosomes, and synaptic vesicles. Many genes encoding subunits of V-ATPases, namely and , have been associated with neurodevelopmental disorders and epilepsy. The autosomal dominant p.

View Article and Find Full Text PDF

Although metabolic alterations are observed in many monogenic and complex genetic disorders, the impact of most mammalian genes on cellular metabolism remains unknown. Understanding the effect of mouse gene dysfunction on metabolism can inform the functions of their human orthologues. We investigated the effect of loss-of-function mutations in 30 unique gene knockout (KO) lines on plasma metabolites, including genes coding for structural proteins (11 of 30), metabolic pathway enzymes (12 of 30) and protein kinases (7 of 30).

View Article and Find Full Text PDF
Article Synopsis
  • - The study presents the first specific reference ranges for electrocardiography (ECG) in laboratory mice, derived from a large dataset of over 26,000 C57BL/6N mice grouped by age and sex.
  • - It finds that factors like sex and age have minimal impact on key ECG metrics, while anesthesia significantly reduces heart rate.
  • - The reference ranges established for C57BL/6N mice appear applicable to various other mouse strains, providing a crucial resource for research involving cardiac function in experimental settings.
View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on the MAC spectrum disease, including microphthalmia, anophthalmia, and coloboma, which are eye malformations that can lead to visual impairment in children due to genetic factors, mainly mutations in genes like OTX2 and SOX2, though many cases remain unexplained.
  • - Researchers utilized the IMPC database to find 74 unique gene knockout lines in mice that are associated with eye defects, discovering many of these lines had not been previously linked to eye development, ultimately identifying 59 genes of interest.
  • - The study highlights the connection between certain genes and protein pathways critical for early eye development, revealing 40 new genes that may play a role in mammalian eye formation,
View Article and Find Full Text PDF

We searched a database of single-gene knockout (KO) mice produced by the International Mouse Phenotyping Consortium (IMPC) to identify candidate ciliopathy genes. We first screened for phenotypes in mouse lines with both ocular and renal or reproductive trait abnormalities. The STRING protein interaction tool was used to identify interactions between known cilia gene products and those encoded by the genes in individual knockout mouse strains in order to generate a list of "candidate ciliopathy genes.

View Article and Find Full Text PDF

Background: The diagnostic rate of Mendelian disorders in sequencing studies continues to increase, along with the pace of novel disease gene discovery. However, variant interpretation in novel genes not currently associated with disease is particularly challenging and strategies combining gene functional evidence with approaches that evaluate the phenotypic similarities between patients and model organisms have proven successful. A full spectrum of intolerance to loss-of-function variation has been previously described, providing evidence that gene essentiality should not be considered as a simple and fixed binary property.

View Article and Find Full Text PDF

Identifying the genetic determinants of pain is a scientific imperative given the magnitude of the global health burden that pain causes. Here, we report a genetic screen for nociception, performed under the auspices of the International Mouse Phenotyping Consortium. A biased set of 110 single-gene knockout mouse strains was screened for 1 or more nociception and hypersensitivity assays, including chemical nociception (formalin) and mechanical and thermal nociception (von Frey filaments and Hargreaves tests, respectively), with or without an inflammatory agent (complete Freund's adjuvant).

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the genetic factors underlying congenital heart disease by screening nearly 3,900 mouse gene mutations for cardiac issues, finding 705 lines with conditions like arrhythmia and myocardial hypertrophy.
  • - Out of these, 486 genes are newly linked to heart dysfunction, including variants of unknown relevance (VUR), with specific mutations in five genes (Casz1, Dnajc18, Pde4dip, Rnf38, Tmem161b) leading to notable structural heart defects.
  • - Using data from the UK Biobank, the research further confirms the role of the DNAJC18 gene in heart function, highlighting its loss as linked to changes in cardiac performance, thus identifying new potential targets for understanding
View Article and Find Full Text PDF

Improving reproducibility and replicability in preclinical research is a widely discussed and pertinent topic, especially regarding ethical responsibility in animal research. INFRAFRONTIER, the European Research Infrastructure for the generation, phenotyping, archiving, and distribution of model mammalian genomes, is addressing this issue by developing internal quality principles for its different service areas, that provides a quality framework for its operational activities. This article introduces the INFRAFRONTIER Quality Principles in Systemic Phenotyping of genetically altered mouse models.

View Article and Find Full Text PDF

We proteotyped blood plasma from 30 mouse knockout strains and corresponding wild-type mice from the International Mouse Phenotyping Consortium. We used targeted proteomics with internal standards to quantify 375 proteins in 218 samples. Our results provide insights into the manifested effects of each gene knockout at the plasma proteome level.

View Article and Find Full Text PDF

The genetic landscape of diseases associated with changes in bone mineral density (BMD), such as osteoporosis, is only partially understood. Here, we explored data from 3,823 mutant mouse strains for BMD, a measure that is frequently altered in a range of bone pathologies, including osteoporosis. A total of 200 genes were found to significantly affect BMD.

View Article and Find Full Text PDF

The development of new analgesic drugs has been hampered by the inability to translate preclinical findings to humans. This failure is due in part to the weak connection between commonly used pain outcome measures in rodents and the clinical symptoms of chronic pain. Most rodent studies rely on the use of experimenter-evoked measures of pain and assess behavior under ethologically unnatural conditions, which limits the translational potential of preclinical research.

View Article and Find Full Text PDF

We investigated the effect of homogenization strategy and protein precipitation on downstream protein quantitation using multiple reaction monitoring mass spectrometry (MRM-MS). Our objective was to develop a workflow capable of processing disparate tissue types with high throughput, minimal variability, and maximum purity. Similar abundances of endogenous proteins were measured in nine different mouse tissues regardless of the homogenization method used; however, protein precipitation had strong positive effects on several targets.

View Article and Find Full Text PDF

Dislocation in hindlimb tarsals are being observed at a low, but persistent frequency in group-housed adult male mice from C57BL/6N substrains. Clinical signs included a sudden onset of mild to severe unilateral or bilateral tarsal abduction, swelling, abnormal hindlimb morphology and lameness. Contraction of digits and gait abnormalities were noted in multiple cases.

View Article and Find Full Text PDF

The identification of causal variants in sequencing studies remains a considerable challenge that can be partially addressed by new gene-specific knowledge. Here, we integrate measures of how essential a gene is to supporting life, as inferred from viability and phenotyping screens performed on knockout mice by the International Mouse Phenotyping Consortium and essentiality screens carried out on human cell lines. We propose a cross-species gene classification across the Full Spectrum of Intolerance to Loss-of-function (FUSIL) and demonstrate that genes in five mutually exclusive FUSIL categories have differing biological properties.

View Article and Find Full Text PDF

Circadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • High-throughput phenomic projects often deal with complex data from various treatment and control groups, which can complicate analyses due to variations over time, necessitating a method to effectively use local controls to enhance analytic accuracy.
  • The authors present 'soft windowing', a method that assigns weighted importance to control data based on their proximity in time to mutant data, leading to reduced false positives (10%) in analyses and increased significant P-values (30%).
  • This method is implemented in an R package called SmoothWin, which is publicly accessible and can also be applied to large-scale human phenomic studies such as the UK Biobank.
View Article and Find Full Text PDF

Oculocutaneous syndromes are often due to mutations in single genes. In some cases, mouse models for these diseases exist in spontaneously occurring mutations, or in mice resulting from forward mutatagenesis screens. Here we present novel genes that may be causative for oculocutaneous disease in humans, discovered as part of a genome-wide screen of knockout-mice in a targeted single-gene deletion project.

View Article and Find Full Text PDF

Mouse knockouts facilitate the study ofgene functions. Often, multiple abnormal phenotypes are induced when a gene is inactivated. The International Mouse Phenotyping Consortium (IMPC) has generated thousands of mouse knockouts and catalogued their phenotype data.

View Article and Find Full Text PDF
Article Synopsis
  • The text refers to a correction made to a previously published article with the DOI: 10.1038/s42003-018-0226-0.
  • The correction is likely important for ensuring the accuracy and integrity of the research findings presented in the original article.
  • Readers are encouraged to check the corrected version for updated information that may affect the conclusions or interpretations of the study.
View Article and Find Full Text PDF
Article Synopsis
  • Advances in next generation sequencing have made it easier to study genetics, but understanding genetic causes of eye diseases is still tough due to cost and limited access to human genetic data.
  • The International Mouse Phenotyping Consortium conducted a study evaluating 4,364 genes and found that 347 of them affect eye traits, with 75% being previously unknown in eye disease research.
  • This significant increase in known genes related to eye conditions could have future implications for understanding eye development and diseases in humans.
View Article and Find Full Text PDF

The International Mouse Phenotyping Consortium (IMPC) is building a catalogue of mammalian gene function by producing and phenotyping a knockout mouse line for every protein-coding gene. To date, the IMPC has generated and characterised 5186 mutant lines. One-third of the lines have been found to be non-viable and over 300 new mouse models of human disease have been identified thus far.

View Article and Find Full Text PDF

Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes.

View Article and Find Full Text PDF