Rationalizing the role of chemical interactions in the precursor solutions on the structure, morphology, and performance of thin-film CuZnSn(S,Se) (CZTSSe) is key for the development of bifacial and other photovoltaic (PV) device architectures designed by scalable solution-based methods. In this study, we uncover the impact of dimethylformamide (DMF) and isopropanol (IPA) solvent mixtures on cation complexation and rheology of the precursor solution, as well as the corresponding morphology, composition, and PV performance of CZTSSe thin-film grown on fluorine-doped tin oxide (FTO). We find that increasing the proportion of IPA leads to a nonlinear increase in dynamic viscosity due to the strong repulsion between DMF and IPA, which is characterized by an interaction cohesion parameter of 3.
View Article and Find Full Text PDFThermal annealing is the most common postdeposition technique used to crystallize antimony selenide (SbSe) thin films. However, due to slow processing speeds and a high energy cost, it is incompatible with the upscaling and commercialization of SbSe for future photovoltaics. Herein, for the first time, a fast-annealing technique that uses millisecond light pulses to deliver energy to the sample is adapted to cure thermally evaporated SbSe films.
View Article and Find Full Text PDFResearch efforts aimed at improving the crystal quality of solution-processed CuZnSn(S,Se) (CZTSSe) absorbers have largely employed delicate pre- and postprocessing strategies, such as multistep selenization, heat treatment in mixed chalcogen atmospheres, and multinary extrinsic doping that are often complex and difficult to reproduce. On the other hand, understanding and tuning chemical interactions in precursor inks prior to the thin-film deposition have received significantly less attention. Herein, we show for the first time how the complexation of metallic and chalcogen precursors in solution have a stark influence on the crystallization and optoelectronic quality of CZTSSe absorbers.
View Article and Find Full Text PDFElectrochromic (EC) glass has the potential to significantly improve energy efficiency in buildings by controlling the amount of light and heat that the building exchanges with its exterior. However, the development of EC materials is still hindered by key challenges such as slow switching time, low coloration efficiency, short cycling lifetime, and material degradation. Metal doping is a promising technique to enhance the performance of metal oxide-based EC materials, where adding a small amount of metal into the host material can lead to lattice distortion, a variation of oxygen vacancies, and a shorter ion transfer path during the insertion and de-insertion process.
View Article and Find Full Text PDFTuberculosis (TB) control is complicated by the emergence of drug resistance. Promising strategies to prevent drug resistance are the targeting of nonreplicating, drug-tolerant bacterial populations and targeting of the host, but inhibitors and targets for either are still rare. In a cell-based screen of ATP-competitive inhibitors, we identified compounds with in vitro activity against replicating (), and an anilinoquinazoline (AQA) that also had potent activity against nonreplicating and persistent .
View Article and Find Full Text PDFHistorically, viruses have demonstrated airborne transmission. Emerging evidence suggests the novel coronavirus (SARS-CoV-2) that causes COVID-19 also spreads by airborne transmission. This is more likely in indoor environments, particularly with poor ventilation.
View Article and Find Full Text PDFAerosol transmission has been a pathway for the spread of many viruses. Similarly, emerging evidence has determined aerosol transmission for Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) and the resulting COVID-19 pandemic to be significant. As such, data regarding the effect of Heating, Ventilation, and Air Conditioning (HVAC) features to control and mitigate virus transmission is essential.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2022
A comprehensive study of bulk molybdenum dichalcogenides is presented with the use of soft and hard X-ray photoelectron (SXPS and HAXPES) spectroscopy combined with hybrid density functional theory (DFT). The main core levels of MoS, MoSe, and MoTe are explored. Laboratory-based X-ray photoelectron spectroscopy (XPS) is used to determine the ionization potential (IP) values of the MoX series as 5.
View Article and Find Full Text PDFTetrathiatriarylmethyl radicals (TAM or trityl) are receiving increasing attention in various fields of magnetic resonance such as imaging, dynamic nuclear polarization, spin labeling, and, more recently, molecular magnetism and quantum information technology. Here, a trityl radical attached via a phenyl bridge to a copper(II)tetraphenylporphyrin was synthesized, and its magnetic properties studied by multi-frequency continuous-wave electron paramagnetic resonance (EPR) spectroscopy and magnetic measurements. EPR revealed that the electron spin-spin coupling constant J between the trityl and Cu spin centers is ferromagnetic with a magnitude of -2.
View Article and Find Full Text PDFPfizer's drug for the treatment of patients infected with COVID-19, Paxlovid, contains most notably nirmatrelvir, along with ritonavir. Worldwide demand is projected to be in the hundreds of metric tons per year, to be produced by several generic drug manufacturers. Here we show a 7-step, 3-pot synthesis of the antiviral nirmatrelvir, arriving at the targeted drug in 70% overall yield.
View Article and Find Full Text PDFRespiratory viruses are capable of transmitting via an aerosol route. Emerging evidence suggests that SARS-CoV-2 which causes COVID-19 can be spread through airborne transmission, particularly in indoor environments with poor ventilation. Heating, ventilation, and air conditioning (HVAC) systems can play a role in mitigating airborne virus transmission.
View Article and Find Full Text PDFHealthcare in general and dialysis care in particular are contributing to resource consumption and, thus, have a notable environmental footprint. Dialysis is a life-saving therapy but it entails the use of a broad range of consumables generating waste, and consumption of water and energy for the dialysis process. Various stakeholders in the healthcare sector are called upon to develop and to take measures to save resources and to make healthcare and dialysis more sustainable.
View Article and Find Full Text PDFMycobacteria are responsible for a heavy global disease burden, but their relative genetic intractability has long frustrated research efforts. The introduction of clustered regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi) has made gene repression in mycobacteria much more efficient, but limitations of the prototypical Cas9-based platform, for example, in multigene regulation, remain. Here, we introduce an alternative CRISPRi platform for mycobacteria that is based on the minimal type V Cas12a enzyme in combination with synthetic CRISPR arrays.
View Article and Find Full Text PDFThe dynamics of intramolecular hydrogen-bonding involving sulfur atoms as acceptors is studied using two-dimensional infrared (2DIR) spectroscopy. The molecular system is a tertiary alcohol whose donating hydroxy group is embedded in a hydrogen-bond potential with torsional C-symmetry about the carbon-oxygen bond. The linear and 2DIR-spectra recorded in the OH-stretching region of the alcohol can be simulated very well using Kubo's line shape theory based on the cumulant expansion for evaluating the linear and nonlinear optical response functions.
View Article and Find Full Text PDFThe combination of pulsed dipolar electron paramagnetic resonance spectroscopy (PDS) with site-directed spin labelling is a powerful tool in structural biology. Rational design of trityl-based spin labels has enabled studying biomolecular structures at room temperature and within cells. However, most current trityl spin labels suffer either from aggregation with proteins due to their hydrophobicity, or from bioconjugation groups not suitable for in-cell measurements.
View Article and Find Full Text PDFTransposon-based strategies provide a powerful and unbiased way to study the bacterial stress response, but these approaches cannot fully capture the complexities of network-based behaviour. Here, we present a network-based genetic screening approach: the transcriptional regulator-induced phenotype (TRIP) screen, which we used to identify previously uncharacterized network adaptations of Mycobacterium tuberculosis to the first-line anti-tuberculosis drug isoniazid (INH). We found regulators that alter INH susceptibility when induced, several of which could not be identified by standard gene disruption approaches.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2020
The improvement of antimony selenide solar cells by short-term air exposure is explained using complementary cell and material studies. We demonstrate that exposure to air yields a relative efficiency improvement of n-type SbSe solar cells of ca. 10% by oxidation of the back surface and a reduction in the back contact barrier height (measured by ) from 320 to 280 meV.
View Article and Find Full Text PDFBenzo[1,2-d;4,5-d']bis[1,3]dithioles are important building blocks within a range of functional materials such as fluorescent dyes, conjugated polymers, and stable trityl radicals. Access to these is usually gained via -butyl aryl sulfides, the synthesis of which requires the use of highly malodorous -butyl thiol and relies on SAr-chemistry requiring harsh reaction conditions, while giving low yields. In the present work, S--butyl isothiouronium bromide is successfully applied as an odorless surrogate for -butyl thiol.
View Article and Find Full Text PDFPhotogenerated multi-spin systems hold great promise for a range of technological applications in various fields, including molecular spintronics and artificial photosynthesis. However, the further development of these applications, via targeted design of materials with specific magnetic properties, currently still suffers from a lack of understanding of the factors influencing the underlying excited state dynamics and mechanisms on a molecular level. In particular, systematic studies, making use of different techniques to obtain complementary information, are largely missing.
View Article and Find Full Text PDFThe understanding of biomolecular function is coupled to knowledge about the structure and dynamics of these biomolecules, preferably acquired under native conditions. In this regard, pulsed dipolar EPR spectroscopy (PDS) in conjunction with site-directed spin labeling (SDSL) is an important method in the toolbox of biophysical chemistry. However, the currently available spin labels have diverse deficiencies for in-cell applications, for example, low radical stability or long bioconjugation linkers.
View Article and Find Full Text PDFThe van der Waals material GeSe is a potential solar absorber, but its optoelectronic properties are not yet fully understood. Here, through a combined theoretical and experimental approach, the optoelectronic and structural properties of GeSe are determined. A fundamental absorption onset of 1.
View Article and Find Full Text PDFSolid-state nanofoaming experiments are conducted on two polymethyl methacrylate (PMMA) grades of markedly different molecular weight using CO as the blowing agent. The sensitivity of porosity to foaming time and foaming temperature is measured. Also, the microstructure of the PMMA nanofoams is characterized in terms of cell size and cell nucleation density.
View Article and Find Full Text PDFPulsed electron paramagnetic resonance (EPR) dipolar spectroscopy (PDS) offers several methods for measuring dipolar coupling constants and thus the distance between electron spin centers. Up to now, PDS measurements have been mostly applied to spin centers whose g-anisotropies are moderate and therefore have a negligible effect on the dipolar coupling constants. In contrast, spin centers with large g-anisotropy yield dipolar coupling constants that depend on the g-values.
View Article and Find Full Text PDF