Publications by authors named "Flavio Pardo"

In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ∼1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux.

View Article and Find Full Text PDF

Semiconductor fabs are large, complex industrial sites with costs for a single facility approaching $10B. In this paper we discuss the possibility of putting the entire functionality of such a fab onto a single silicon chip. We demonstrate a path forward where, for certain applications, especially at the nanometer scale, one can consider using a single chip approach for building devices with significant potential cost savings.

View Article and Find Full Text PDF

We present a microelectromechanical system (MEMS) based method for the resist-free patterning of nanostructures. Using a focused ion beam to customize larger MEMS machines, we fabricate apertures with features less than 50 nm in diameter on plates that can be moved with nanometer precision over an area greater than 20 × 20 μm(2). Depositing thermally evaporated gold atoms though the apertures while moving the plate results in the deposition of nanoscale metal patterns.

View Article and Find Full Text PDF