Front Bioeng Biotechnol
May 2020
The glycoside hydrolase family 39 (GH39) is a functionally expanding family with limited understanding about the molecular basis for substrate specificity and extremophilicity. In this work, we demonstrate the key role of the positive-subsite region in modulating substrate affinity and how the lack of a C-terminal extension impacts on oligomerization and structural stability of some GH39 members. The crystallographic and SAXS structures of a new GH39 member from the phytopathogen support the importance of an extended C-terminal to promote oligomerization as a molecular strategy to enhance thermal stability.
View Article and Find Full Text PDFBiotechnol Bioeng
April 2019
Rational design is an important tool for sculpting functional and stability properties of proteins and its potential can be much magnified when combined with in vitro and natural evolutionary diversity. Herein, we report the structure-guided design of a xylose-releasing exo-β-1,4-xylanase from an inactive member of glycoside hydrolase family 43 (GH43). Structural analysis revealed a nonconserved substitution (Lys ) that results in the disruption of the hydrogen bond network that supports catalysis.
View Article and Find Full Text PDFBackground: Arabinoxylan is an abundant polysaccharide in industrially relevant biomasses such as sugarcane, corn stover and grasses. However, the arabinofuranosyl di-substitutions that decorate the xylan backbone are recalcitrant to most known arabinofuranosidases (Abfs).
Results: In this work, we identified a novel GH51 Abf (Abf51) that forms trimers in solution and can cope efficiently with both mono- and di-substitutions at terminal or internal xylopyranosyl units of arabinoxylan.
The cellulases from Glycoside Hydrolyses family 12 (GH12) play an important role in cellulose degradation and plant cell wall deconstruction being widely used in a number of bioindustrial processes. Aiming to contribute toward better comprehension of these class of the enzymes, here we describe a high-yield secretion of a endoglucanase GH12 from Aspegillus terreus (AtGH12), which was cloned and expressed in Aspergillus nidulans strain A773. The purified protein was used for complete biochemical and functional characterization.
View Article and Find Full Text PDFA novel GH1 β-glucosidase (EaBgl1A) from a bacterium isolated from Antarctica soil samples was recombinantly overexpressed in Escherichia coli cells and characterized. The enzyme showed unusual pH dependence with maximum activity at neutral pH and retention of high catalytic activity in the pH range 6 to 9, indicating a catalytic machinery compatible with alkaline conditions. EaBgl1A is also a cold-adapted enzyme, exhibiting activity in the temperature range from 10 to 40°C with optimal activity at 30°C, which allows its application in industrial processes using low temperatures.
View Article and Find Full Text PDF