Maladaptive, non-resolving inflammation contributes to chronic inflammatory diseases such as atherosclerosis. Because macrophages remove necrotic cells, defective macrophage programs can promote chronic inflammation with persistent tissue injury. Here, we investigated the mechanisms sustaining vascular macrophages.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
February 2023
Macrophages are crucial effector cells of the innate immune system and have important roles in the initiation and resolution of inflammation as well as in tissue homeostasis. To fulfill these diverse roles, macrophages exhibit metabolic flexibility to quickly adapt to the needs of the effector functions required, as well as to the microenvironment. This metabolic flexibility is exemplified by proinflammatory macrophages, which upregulate glycolysis to both initiate and sustain the process of inflammation.
View Article and Find Full Text PDFCyclophosphamide is a widely used anticancer and immunosuppressive prodrug that unfortunately causes severe adverse effects, including cardiotoxicity. Although the exact cardiotoxic mechanisms are not completely understood, a link between cyclophosphamide's pharmacologically active metabolites, namely 4-hydroxycyclophosphamide and acrolein, and the toxicity observed after the administration of high doses of the prodrug is likely. Therefore, the objective of this study is to shed light on the cardiotoxic mechanisms of cyclophosphamide and its main biotransformation products, through classic and metabolomics studies.
View Article and Find Full Text PDFDoxorubicin (Dox) is one of the most widely used treatments for breast cancer, although limited by the well-documented cardiotoxicity and other off-target effects. Mesenchymal stem cell (MSC) secretome has shown immunomodulatory and regenerative properties, further potentiated under 3D conditions. This work aimed to uncover the effect of the MSC-derived secretome from 3D (CM3D) or 2D (CM2D) cultures, in human malignant breast cells (MDA-MB-231), non-tumor breast epithelial cells (MCF10A) and differentiated AC16 cardiomyocytes, co-treated with Dox.
View Article and Find Full Text PDF