This study compared Zr-Mo alloys with commercial metallic biomaterials. It was observed that the Zr-Mo alloys exhibited favourable mechanical properties, particularly the Zr-10Mo alloy, which showed the highest strength to Young's modulus ratio among all evaluated metals. These alloys also exhibited the lowest magnetic susceptibilities, which are important for magnetic resonance imaging (MRI).
View Article and Find Full Text PDFThe magnetocaloric effect (MCE) is the basis for magnetic refrigeration, and can replace conventional gas compression technology due to its superior efficiency and environment friendliness. MCE materials must exhibit a large temperature variation in response to an adiabatic magnetic-field variation and a large isothermal entropic effect is also expected. In this respect, MnAs shows the colossal MCE, but the effect appears under high pressures.
View Article and Find Full Text PDFTo present day, the maximum magnetocaloric effect (MCE) at room temperature for a magnetic field change of 5 T is 40 J/(kg K) for MnAs. In this Letter we present colossal MCE measurements on MnAs under pressure, reaching values up to 267 J/(kg K), far greater than the magnetic limit arising from the assumption of magnetic field independence of the lattice and electronic entropy contributions. The origin of the effect is the contribution to the entropy variation coming from the lattice through the magnetoelastic coupling.
View Article and Find Full Text PDFThe compounds [Ru(NH(3))(5)(dtdp)](TFMS)(3), [Os(NH(3))(5)(dtdp)](TFMS)(3), [(NH(3))(5)Os(dtdp)Os(NH(3))(5)](TFMS)(6), [(NH(3))(5)Os(dtdp)Ru(NH(3))(5)](TFMS)(3)(PF(6))(2), and [(NH(3))(5)Os(dtdp)Fe(CN)(5)] (dtdp = 4,4'-dithiodipyridine, TFMS = trifluoromethanesulfonate) have been synthesized and characterized by elemental analysis, cyclic voltammetry, electronic, vibrational, EPR, and (1)H NMR spectroscopies. Changes in the electronic and voltammetric spectra of the ion complex [Os(NH(3))(5)(dtdp)](3+) as a function of the solution pH enable us to calculate the pK(a) for the [Os(NH(3))(5)(dtdpH)](4+) and [Os(NH(3))(5)(dtdpH)](3+) acids as 3.5 and 5.
View Article and Find Full Text PDF