Publications by authors named "Flavio C Cruz"

A room temperature line list for the HO radioactive isotopologue of the water molecule is computed using the variational nuclear-motion DVR3D program suite and an empirical high-precision potential energy function. The line list consists of rotation-vibrational energies and Einstein-A coefficients, covering a wide spectral range from 0 to 25000 cm and the total angular momenta J up to 30. Estimates of air-broadening coefficients are provided.

View Article and Find Full Text PDF

The mid-infrared atmospheric window of 3-5.5  μm holds valuable information regarding molecular composition and function for fundamental and applied spectroscopy. Using a robust, mode-locked fiber-laser source of <11  fs pulses in the near infrared, we explore quadratic (χ^{(2)}) nonlinear optical processes leading to frequency comb generation across this entire mid-infrared atmospheric window.

View Article and Find Full Text PDF

Probing matter with light in the mid-infrared provides unique insight into molecular composition, structure, and function with high sensitivity. However, laser spectroscopy in this spectral region lacks the broadband or tunable light sources and efficient detectors available in the visible or near-infrared. We overcome these challenges with an approach that unites a compact source of phase-stable, single-cycle, mid-infrared pulses with room temperature electric field-resolved detection at video rates.

View Article and Find Full Text PDF

Background: To evaluate the reliability of the Bare Spot (BS) as an anatomical landmark for the intra-operative definition of bone loss in anterior shoulder instability.

Methods: The distances from the BS to the anterior (BS-A), posterior (BS-P) and inferior margins of the glenoid cavity were determined both under arthroscopic visualization and by an open approach in 20 shoulders.

Results: The BS did not coincide with the centre of the glenoid cavity of the studied shoulders because the BS-P distance was greater than the BS-A distance ( < 0.

View Article and Find Full Text PDF

We experimentally demonstrate a simple configuration for mid-infrared (MIR) frequency comb generation in quasi-phase-matched lithium niobate waveguides using the cascaded-χ nonlinearity. With nanojoule-scale pulses from an Er:fiber laser, we observe octave-spanning supercontinuum in the near-infrared with dispersive wave generation in the 2.5-3 μm region and intrapulse difference frequency generation in the 4-5 μm region.

View Article and Find Full Text PDF

Terahertz dual frequency comb spectroscopy (THz-DFCS) yields high spectral resolution without compromising bandwidth. Nonetheless, the resolution of THz-DFCS is usually limited by the laser repetition rate, which is typically between 80 MHz and 1 GHz. In this paper, we demonstrate a new method to achieve sub-repetition rate resolution in THz-DFCS by adaptively modifying the effective laser repetition rate using integrated Mach-Zehnder electro-optic modulators (MZ-EOMs).

View Article and Find Full Text PDF

Mid-infrared femtosecond optical frequency combs were produced by difference frequency generation of the spectral components of a near-infrared comb in a 3-mm-long MgO:PPLN crystal. We observe strong pump depletion and 9.3 dB parametric gain in the 1.

View Article and Find Full Text PDF

The asynchronous transmission (encoding and decoding) of 64-bit information using binary spectral phase shaping is demonstrated. The accurate introduction and retrieval of the binary information is possible by using multiphoton intrapulse interference phase scan (MIIPS) to measure and correct the spectral phase distortions of the laser and the transmission media. Experimental demonstration is achieved using a sub-6 fs Ti:Sapphire laser with 2.

View Article and Find Full Text PDF

Optical frequency combs generated by multiple four-wave mixing in short and highly nonlinear optical fibers are proposed for use as high precision frequency markers, calibration of astrophysical spectrometers, broadband spectroscopy and metrology. Implementations can involve two optical frequency standards as input lasers, or one standard and a second laser phase-locked to it using a stable microwave reference oscillator. Energy and momentum conservation required by the parametric generation assures phase coherence among comb frequencies, while fibers with short lengths can avoid linewidth broadening and stimulated Brillouin scattering.

View Article and Find Full Text PDF

We report a self-starting prismless femtosecond Ti:sapphire ring laser whose repetition rate has been gradually increased from 1 to 2.12 GHz. A broadband spectrum extending from 650 to 1040 nm, in which 17% of the intracavity power is generated in a single-pass through the crystal, is preserved in spite of the reduction in peak power.

View Article and Find Full Text PDF

We describe a setup for a deep optical dipole trap or lattice designed for holding atoms at temperatures of a few mK, such as alkaline-Earth atoms which have undergone only regular Doppler cooling. We use an external optical cavity to amplify 3.2 W from a commercial single-frequency laser at 532 nm to 523 W.

View Article and Find Full Text PDF

We report on continuous-wave second harmonic generation of near infrared Ti:sapphire lasers using room temperature critically phase-matched, angle-tuned BIBO (bismuth triborate, BiB(3)O(6)) crystals, placed both in an external power enhancement cavity and inside the laser resonator. In the first case we generate 70 mW of single-frequency radiation at 423 nm for 330 mW of input power at 846 nm. For intracavity frequency doubling we achieve 690 mW at 423 nm for 7.

View Article and Find Full Text PDF

We demonstrate a 1 GHz prismless femtosecond Ti:sapphire ring laser that emits 890 mW for 7.6 W of pump power over a continuum extending from 585 to 1200 nm at -20 dB below the maximum. A broadband continuum is obtained with the net cavity group delay dispersion having -50 to 100 fs2 oscillations from 700 to 900 nm.

View Article and Find Full Text PDF

We demonstrate high resolution coherent control of cold atomic rubidium utilizing spectral phase manipulation of a femtosecond optical frequency comb. Transient coherent accumulation is directly manifested by the enhancement of signal amplitude and spectral resolution via the pulse number. The combination of frequency comb technology and spectral phase manipulation enables coherent control techniques to enter a new regime with natural linewidth resolution.

View Article and Find Full Text PDF

A tapered semiconductor amplifier is injection seeded by a femtosecond optical frequency comb at 780 nm from a mode-locked Ti:sapphire laser. Energy gains of more than 17 dB(12 dB) are obtained for 1 mW(20 mW) of average input power when the input pulses are stretched into the picosecond range. A spectral window of supercontinuum light generated in a photonic fiber has also been amplified.

View Article and Find Full Text PDF