Constructing local hidden variable (LHV) models for entangled quantum states is a fundamental problem, with implications for the foundations of quantum theory and for quantum information processing. It is, however, a challenging problem, as the model should reproduce quantum predictions for all possible local measurements. Here we present a simple method for building LHV models, applicable to any entangled state and considering continuous sets of measurements.
View Article and Find Full Text PDFThe relation between entanglement and nonlocality is discussed in the case of multipartite quantum systems. We show that, for any number of parties, there exist genuinely multipartite entangled states that admit a fully local hidden variable model, i.e.
View Article and Find Full Text PDFThe statistics of local measurements performed on certain entangled states can be reproduced using a local hidden variable (LHV) model. While all known models make use of an infinite amount of shared randomness, we show that essentially all entangled states admitting a LHV model can be simulated with finite shared randomness. Our most economical model simulates noisy two-qubit Werner states using only log_{2}(12)≃3.
View Article and Find Full Text PDFThe nonlocality of certain quantum states can be revealed by using local filters before performing a standard Bell test. This phenomenon, known as hidden nonlocality, has been so far demonstrated only for a restricted class of measurements, namely, projective measurements. Here, we prove the existence of genuine hidden nonlocality.
View Article and Find Full Text PDF