The self-diffusivity of cyclohexane and -octane adsorbed in hierarchical zeolite monoliths has been investigated by using PFG-NMR. In these samples, the intrinsic FAU-X zeolite microporosity combines with a complex macroporous network composed of aggregated zeolite nanocrystals. As temperature is increased, cyclohexane self-diffusivity apparently decreases, reaches a minimum, and then starts increasing upon further increasing the temperature.
View Article and Find Full Text PDFA methodology for determining the micropore, mesopore, and external surface areas of hierarchical microporous/mesoporous materials from N adsorption isotherms at 77 K is described. For FAU-Y zeolites, the microporous surface area calculated using the Rouquerol criterion and the Brunauer-Emmett-Teller (BET) equation is in accord with the geometrical surface determined by the chord length distribution method. Therefore, BET surface area ( S) is the well representative of micropore surface areas of microporous materials and of total surface area of microporous/mesoporous materials.
View Article and Find Full Text PDFUnlabelled: Multifunctional nanomaterials combining diagnosis and therapeutic properties have attracted a considerable attention in cancer research. Yet some important challenges are still to be faced, including an optimal coupling between these two types of properties that would be effective within complex biological tissues. To address these points, we have prepared novel nanoplatforms associating controlled drug delivery of doxorubicin and Magnetic Resonance Imaging (MRI) contrast-enhancement that exhibit high specificity towards cancer cells compared to normal cells and evaluated them both in 2D cultures and within 3D tissue-like biomimetic matrices.
View Article and Find Full Text PDFThe texture of mesoporous FAU-Y (FAUmes) prepared by surfactant-templating in basic media is a subject of debate. It is proposed that mesoporous FAU-Y consists of: (1) ordered mesoporous zeolite networks formed by a surfactant-assisted zeolite rearrangement process involving local dissolution and reconstruction of the crystalline framework, and (2) ordered mesoporous amorphous phases as Al-MCM-41, which coexist with zeolite nanodomains obtained by a dissolution-reassembly process. By the present systematic study, performed with FAU-Y (Si/Al = 15) in the presence of octadecyltrimethylammonium bromide and 0 < NaOH/Si ratio < 0.
View Article and Find Full Text PDFCollagen and its denatured form, gelatin, are biopolymers of fundamental interest in numerous fields ranging from living tissues to biomaterials, food, and cosmetics. This study aims at characterizing mixtures of those biopolymers at high concentrations (up to 100 mg·mL) at which collagen has mesogenic properties. We use a structural approach combining polarization-resolved multiphoton microscopy, polarized light microscopy, magnetic resonance imaging, and transmission electron microscopy to analyze gelatin and collagen/gelatin dense phases in their sol and gel states from the macroscopic to the microscopic scale.
View Article and Find Full Text PDFThe principle aspects and constraints of the dynamics and kinetics of zeolite nucleation in hydrogel systems are analyzed on the basis of a model Na-rich aluminosilicate system. A detailed time-series EMT-type zeolite crystallization study in the model hydrogel system was performed to elucidate the topological and temporal aspects of zeolite nucleation. A comprehensive set of analytical tools and methods was employed to analyze the gel evolution and complement the primary methods of transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFThe continuous-flow hyperpolarised (HP)-(129)Xe NMR and magic angle spinning-pulsed field gradient (MAS-PFG) NMR techniques have been used for the first time to study the distribution and the dynamics of ibuprofen encapsulated in MCM-41 with two different pore diameters.
View Article and Find Full Text PDFStructural changes in a porous hybrid inorganic-organic ZIF-8 compound have been explored using hyperpolarized (129)Xe NMR of adsorbed xenon at various temperatures. Upon xenon adsorption at low temperature, the organic linkers undergo a reorientation leading to a stepwise increase in xenon adsorption and in chemical shift.
View Article and Find Full Text PDFThe metal-organic framework MIL-53 exhibits a structural transition between two possible porous structures, so-called large-pore (lp) and narrow-pore (np) forms, depending on the temperature or when guest molecules are adsorbed. (129)Xe NMR has been used to study the lp --> np transition induced by the adsorption of xenon as revealed by the adsorption isotherms. The NMR spectra show that the two structures, characterized by two distinct lines, coexist for xenon pressures above 5 x 10(4) Pa at room temperature, but a complete transformation is achieved when the temperature is decreased.
View Article and Find Full Text PDF