Cancer is the second leading cause of death worldwide, and despite the effort of standard treatments, the search for new tools against this disease is necessary. Importantly, it is known that the tumor microenvironment plays a crucial role in tumor initiation, progression, and response to therapies. Therefore, studies of potential drugs that act on these components are as critical as studies regarding antiproliferative substances.
View Article and Find Full Text PDFPain is a worldwide public health problem and its treatment is still a challenge since clinically available drugs do not completely reverse chronic painful states or induce undesirable effects. Crotalphine is a 14 amino acids synthetic peptide that induces a potent and long-lasting analgesic effect on acute and chronic pain models, peripherally mediated by the endogenous release of dynorphin A and the desensitization of the transient receptor potential ankyrin 1 (TRPA1) receptor. However, the effects of crotalphine on the central nervous system (CNS) and the signaling pathway have not been investigated.
View Article and Find Full Text PDFCrotoxin (CTX), the main neurotoxin from snake venom, has anti-inflammatory, immunomodulatory and antinociceptive activities. However, the CTX-induced toxicity may compromise its use. Under this scenario, the use of nanoparticle such as nanostructured mesoporous silica (SBA-15) as a carrier might become a feasible approach to improve CTX safety.
View Article and Find Full Text PDFNeuropathic pain is a disease caused by structural and functional plasticity in central and peripheral sensory pathways that produce alterations in nociceptive processing. Currently, pharmacological treatment for this condition remains a challenge. Crotoxin (CTX), the main neurotoxin of Crotalus durissus terrificus rattlesnake venom, has well described prolonged anti-inflammatory and antinociceptive activities.
View Article and Find Full Text PDFNeutrophils have a critical role in the innate immune response; these cells represent the primary line of defense against invading pathogens or tissue injury. Crotoxin (CTX), the major toxin of the South American rattlesnake (Crotalus durissus terrificus) venom, presents longstanding anti-inflammatory properties, inhibiting neutrophil migration and phagocytosis by peritoneal neutrophils for 14 days. Herein, to elucidate these sustained inhibitory effects induced by CTX, we performed in vitro and in vivo studies evaluating the functionality of bone marrow neutrophils and possible molecular mechanisms associated with these effects.
View Article and Find Full Text PDF