Environmental cues synchronize endogenous rhythms of many physiological processes such as hormone synthesis and secretion. Little is known about the diurnal pattern of hormones and gene expression of the molt cycle. We aimed to investigate in the eyestalk and hepatopancreas of premolt and intermolt the following parameters: 1) the diurnal expression of the ecdysteroid receptor isoforms, and the molt inhibiting hormone 2) the diurnal hemolymph ecdysteroid and melatonin levels; and 3) melatonin effects on the transcripts of the above-mentioned genes in intermolt .
View Article and Find Full Text PDFWe evaluated the environmental quality in mangrove areas of the Western Atlantic with different levels and history of contamination, considering biomarkers for the crab Ucides cordatus. For this purpose, specimens were collected in two climatic seasons (rainy and dry seasons) and assays of genotoxicity (MN, micronucleus), cytotoxicity (NRRT, neutral red retention time) and biochemical (MT, metallothionein; and LPO, lipoperoxidation) were conducted. In the most impacted mangroves, there was an increase in the mean of micronucleus (frequency of MN/1000), which was associated with a shorter retention time (minutes of NRRT).
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2022
Cadmium (Cd) can adversely affect aquatic life, altering reproductive and molting processes in crustaceans. The objective of this study was to evaluate the influence of Cd on reproduction and molting in the crab Callinectes danae. Adult females were obtained from environments with different levels of pollution: low (LC), medium (MC), and high contaminated (HC) areas.
View Article and Find Full Text PDFThe field of nanotechnology had enormous developments, resulting in new methods for the controlled synthesis of a wide variety of nanoscale materials with unique properties. Efficient methods such as thermal decomposition for efficient size control have been developed in recent years for the synthesis of oleic acid (OA)-coated magnetite (FeO) nanoparticles (MNP-OA). These nanostructures can be a source of pollution when emitted in the aquatic environment and could be accumulated by vulnerable marine species such as crustaceans.
View Article and Find Full Text PDFThe mangrove crab Ucides cordatus is a bioindicator of aquatic contamination. In this work, the iron availability and redox activity of saccharide-coated mineral iron supplements (for both human and veterinary use) and ferrocene derivatives in Saline Ucides Buffer (SUB) medium were assessed. The transport of these metallodrugs by four different hepatopancreatic cell types (embryonic (E), resorptive (R), fibrillar (F), and blister (B)) of U.
View Article and Find Full Text PDFCadmium is a toxic metal, present in batteries and discarded in estuaries and mangrove habitats. Apart from that, it is a non-essential metal that causes toxic effects in many organisms. Cadmium accumulates in gills and hepatopancreas of crustaceans and its route into the cell is unknown.
View Article and Find Full Text PDFCrustaceans found in metal-contaminated regions are able to survive, and the authors investigated the physiological mechanisms involved by comparing populations from contaminated and noncontaminated areas. The objective of the present study was to measure the cellular transport of a nonessential metal (cadmium [Cd]) in gills and hepatopancreas of Ucides cordatus, together with cell membrane fluidity, metallothionein levels, and lipid peroxidation. The 2 populations compared were from a polluted and a nonpolluted mangrove area of São Paulo State, Brazil.
View Article and Find Full Text PDFIron metallodrugs comprise mineral supplements, anti-hypertensive agents and, more recently, magnetic nanomaterials, with both therapeutic and diagnostic roles. As biologically-active metal compounds, concern has been raised regarding the impact of these compounds when emitted to the environment and associated ecotoxicological effects for the fauna. In this work we assessed the relative stability of several iron compounds (supplements based on glucoheptonate, dextran or glycinate, as well as 3,5,5-trimethylhexanoyl (TMH) derivatives of ferrocene) against high affinity models of biological binding, calcein and aprotransferrin, via a fluorimetric method.
View Article and Find Full Text PDFAngiotensin I-converting enzyme (ACE) is a well-known metallopeptidase that is found in vertebrates, invertebrates and bacteria. We isolated from the anterior gill of the crab Ucides cordatus an isoform of ACE, here named crab-ACE, which presented catalytic properties closely resembling to those of mammalian ACE. The enzyme was purified on Sepharose-lisinopril affinity chromatography to apparent homogeneity and a band of about 72 kDa could be visualized after silver staining and Western blotting.
View Article and Find Full Text PDFEcotoxicol Environ Saf
July 2012
The crab Ucides cordatus and the red mangrove Rhizophora mangle are endemic mangrove species and potential bio-accumulators of metals. This study quantified the accumulation of six metals (Cd, Cr, Cu, Hg, Mn and Pb) in different organs (claw muscle, hepatopancreas and gills) of U. cordatus, as well as in different maturation stages of the leaves (buds, green mature, and pre-abscission senescent) of R.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
June 2011
The gills contain essential cells for respiration and osmoregulation, whereas the hepatopancreas is the site of digestion, absorption, and nutrients storage. The aim of this work was to separate and characterize gill and hepatopancreatic cells of the mangrove crab, Ucides cordatus. For gills, the methodology consisted of an enzymatic cellular dissociation using Trypsin at 0.
View Article and Find Full Text PDFThe subject of ion regulation in invertebrates is discussed, using a variety of invertebrate model species and approaches that range from the whole-organism level to tissue, subcellular, and molecular levels to illustrate the future direction of the field. These organisms inhabit a variety of aquatic, freshwater, and terrestrial environments, showing specific adaptations to each environment. This overview discusses mechanisms of metal detoxification and the presence of Cl-ATPase in marine organisms to avoid excess intracellular Cl(-); Ca(2+) regulation and endocrine aspects of adaptations to transitional (semiterrestrial) environments; adaptations to Ca(2+)-poor freshwater, particularly the reabsorption of Ca(2+) through specific transporters found in the urine; and finally, ionoregulatory mechanisms for life on land, such as Ca(2+) conservation during molting in isopods and the presence of K(+) channels in insect Malpighian tubules.
View Article and Find Full Text PDFBesides its role in digestion and nutrient absorption, the crustacean gut participates in osmo/ionic regulation. We investigate microanatomy, ionic permeability and transepithelial electrophysiological parameters in the mid- and hindguts of three hyperosmoregulating crabs that inhabit estuarine waters (Chasmagnathus granulata), brackish mangrove swamp (Sesarma rectum) or freshwater (Dilocarcinus pagei). The abdominal hindguts are cuticle lined, the single-layered epithelia consisting of narrow, columnar cells exhibiting apically dense, unvesiculated cytoplasm.
View Article and Find Full Text PDF