Development of cocrystals through crystal engineering is a viable strategy to formulate poorly water-soluble active pharmaceutical ingredients as stable crystalline solid forms with enhanced bioavailability. This study presents a controlled cocrystallization process by cooling for the 1:1 cocrystal of Ketoconazole, an antifungal class II drug with the Fumaric acid coformer. This was successfully set up following the meta-stable zone width determination in acetone-water 4:6 (/) and pure ethanol.
View Article and Find Full Text PDFSeven solvates of the angiotensin II receptor blocker agent olmesartan (CHNO), namely, the methanol (CHNO·CHO), ethanol (CHNO·CHO), isopropanol (CHNO·CHO), isobutanol (CHNO·CHO), 2-ethoxyethanol (CHNO·CHO), chloroform (CHNO·CHCl) and acetonitrile (CHNO·CHN) solvates, were successfully obtained. The crystal structures were determined using the single-crystal X-ray diffraction technique and the structural features are described, each solvate containing one molecule of olmesartan and one of solvent in the asymmetric unit. The samples were also analyzed by powder X-ray diffraction.
View Article and Find Full Text PDFFungal infections are a growing global health problem. Therefore, our group has synthetized and characterized an improved antimycotic by co-crystallization of ketoconazole and para-amino benzoic acid, named KET-PABA. The aim was to increase bioavailability, biocompatibility, and efficiency of the parent drug-ketoconazole.
View Article and Find Full Text PDFThe 1:1 cocrystal of the antifungal agent ketoconazole with -aminobenzoic acid was successfully crystallized and systematically characterized by a physical and pharmacological point of view. Crystal structure determination confirmed the cocrystal identity, giving full insight in its crystal packing and degree of disorder. Powder dissolution measurements revealed a 10-fold aqueous solubility increase that induces a 6.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
June 2017
This work is focused on self-assembled monolayers (SAMs) fabrication, using two types of Au surfaces, by subsequent attachment of different layers in order to develop a stable platform consisting of covalent multilayer functionalized gold surfaces. The key step in the construction of SAMs is the covalent linkage to the gold surface, via an amino-thiol derivative, of a cyclooctyne unit exhibiting strained triple bonds which react fast (catalysts are not needed) and quantitatively with organic azides and enable the introduction of various chemical functionalized entities on the gold surface. The versatility of the system is demonstrated by the reaction of the cyclooctyne decorated gold surface with an azide functionalized terpyridine followed by step by step complexation with Fe(II) and another terpyridine unit resulting into a multilayer covered gold surface.
View Article and Find Full Text PDFHerein we report the preparation and solid state structural investigation of the 1,4-dioxane-quercetin solvate. NMR crystallography methods were employed for crystal structure determination of the solvate from microcrystalline powder. The stability of the compound relative to other reported quercetin solvates is discussed and found to be in perfect agreement with the hydrogen bonding networks/supra-molecular architectures formed in each case.
View Article and Find Full Text PDFSimilarly to synthetic drugs, the exact crystalline form of active ingredients in solid formulations of dietary supplements may directly influence the dissolution rate, bioavailability, and stability of the final product, but this information is usually not provided by manufacturers. Working on the examples of two commercial quercetin dietary supplements a quick, reliable, and sensitive method is introduced for quercetin solid forms discrimination directly on the marketed products, without the need for prior sample preparation. It exploits the complementarity between solid-state Nuclear Magnetic Resonance (ss-NMR) and Powder X-Ray Diffraction (PXRD), which proved essential for performing a complete and accurate solid-state characterization of the two commercial products, and for obtaining new insights into the complex quercetin solid-forms landscape.
View Article and Find Full Text PDFCrystal structures of Tadalafil (TDF) monosolvated forms with acetone (ACE) and methyl ethyl ketone (MEK) were determined by single-crystal X-ray diffraction in which same persistent chains of TDF molecules are present as in the reported structures. The solvates crystallize in a higher orthorhombic symmetry than the known forms with monoclinic structures. Weak interactions between TDF and solvent molecules are present in both solvates, leading to slight conformational distortions of TDF molecules.
View Article and Find Full Text PDF