Cancer is a multifaceted disease that involves several molecular mechanisms including changes in gene expression. Two important processes altered in cancer that lead to changes in gene expression include altered microRNA (miRNA) expression and aberrant splicing events. MiRNAs are short non-coding RNAs that play a central role in regulating RNA silencing and gene expression.
View Article and Find Full Text PDFGlobal cancer incidence and mortality are on the rise. Although cancer is fundamentally a non-communicable disease, a large number of cancers are known to have a viral aetiology. A high burden of infectious agents (Human immunodeficiency virus (HIV), human papillomavirus (HPV), hepatitis B virus (HBV)) in certain Sub-Saharan African countries drives the rates of certain cancers.
View Article and Find Full Text PDFGynaecological cancers are attributed to the second most diagnosed cancers in women after breast cancer. On a global scale, cervical cancer is the fourth most common cancer and the most common cancer in developing countries with rapidly increasing mortality rates. Human papillomavirus (HPV) infection is a major contributor to the disease.
View Article and Find Full Text PDFEndometrial cancer, also known as uterine cancer, is the most common gynaecological malignancy with burgeoning incidence and mortality rates globally. Racial disparity, socioeconomic and geographical differences are important determinants of endometrial cancer incidence and mortality. Endometrial cancer is mainly categorised as type I and type II.
View Article and Find Full Text PDFEach year, colorectal cancers (CRCs) affect over a quarter of a million people. The risk of developing CRC in industrialized nations is approximately 5%. When the disease is localised, treatment success rates range from 70-90%; however, advanced CRC has a high mortality rate, consistently ranking in the top three causes of cancer-related deaths.
View Article and Find Full Text PDFComput Struct Biotechnol J
August 2020
Artificial intelligence (AI) and machine learning have significantly influenced many facets of the healthcare sector. Advancement in technology has paved the way for analysis of big datasets in a cost- and time-effective manner. Clinical oncology and research are reaping the benefits of AI.
View Article and Find Full Text PDFBreast cancer is a common malignancy among women worldwide. Regardless of the economic status of a country, breast cancer poses a burden in prevention, diagnosis and treatment. Developed countries such as the U.
View Article and Find Full Text PDFInt J Radiat Biol
November 2019
Based on clinical and molecular data, breast cancer is a heterogeneous disease. Breast cancers that have no expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) are defined as triple negative breast cancers (TNBCs); luminal cancers have different expressions of ER, PR and/or HER2. TNBCs are frequently linked with advanced disease, poor prognosis and occurrence in young African women, and about 15% of the cases are associated with germline mutations.
View Article and Find Full Text PDFFanconi Anaemia (FA) is an autosomal recessive disorder characterised by defects in DNA repair, associated with chromosomal instability and cellular hypersensitivity to DNA cross-linking agents such as mitomycin C (MMC). The FA repair pathway involves complex DNA repair mechanisms crucial for genomic stability. Deficiencies in DNA repair genes give rise to chromosomal radiosensitivity.
View Article and Find Full Text PDFCervical cancer is the second most common cancer amongst South African women and is the leading cause of cancer-associated mortality in this region. Several international studies on radiation‑induced DNA damage in lymphocytes of cervical cancer patients have remained inconclusive. Despite the high incidence of cervical cancer in South Africa, and the extensive use of radiotherapy to treat it, the chromosomal radiosensitivity of South African cervical cancer patients has not been studied to date.
View Article and Find Full Text PDFThe micronucleus assay (MN assay) is a well-established assay in genetic toxicology, biomonitoring of mutagen-exposed populations and chromosomal radiosensitivity testing. To evaluate the effect of storage time on the chromosomal radiosensitivity assessment in lymphocytes, micronuclei (MN) yields in blood samples received and processed on the same day were compared with MN yields obtained when blood cultures were set up 24 and 48h after blood sampling. Furthermore, the influence of general anaesthesia on MN and binucleated cells (BN) yields in the MN assay was considered.
View Article and Find Full Text PDF