The management of coronavirus disease 2019 has become more complex due to the expansion of available therapies. The presence of severe acute respiratory syndrome coronavirus 2 variants and mutations further complicates treatment due to their differing susceptibilities to therapies. Here we outline the use of real-time whole genome sequencing to detect persistent infection, evaluate for mutations confering resistance to treatments, and guide treatment decisions.
View Article and Find Full Text PDFBackground: Viral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings.
Methods: We conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data collection period, followed by intervention periods comprising 8 weeks of 'rapid' (<48 hr) and 4 weeks of 'longer-turnaround' (5-10 days) sequencing using a sequence reporting tool (SRT).
The cervicovaginal environment in pregnancy is proposed to influence risk of spontaneous preterm birth. The environment is shaped both by the resident microbiota and local inflammation driven by the host response (epithelia, immune cells and mucous). The contributions of the microbiota, metabolome and host defence peptides have been investigated, but less is known about the immune cell populations and how they may respond to the vaginal environment.
View Article and Find Full Text PDFThe syndrome of spontaneous preterm birth (sPTB) presents a challenge to mechanistic understanding, effective risk stratification, and clinical management. Individual associations between sPTB, self-reported ethnic ancestry, vaginal microbiota, metabolome, and innate immune response are known but not fully understood, and knowledge has yet to impact clinical practice. Here, we used multi-data type integration and composite statistical models to gain insight into sPTB risk by exploring the cervicovaginal environment of an ethnically heterogenous pregnant population (n = 346 women; n = 60 sPTB < 37 weeks' gestation, including n = 27 sPTB < 34 weeks).
View Article and Find Full Text PDFPerturbations in the intrauterine environment can result in lifelong consequences for metabolic health during postnatal life. Intrahepatic cholestasis of pregnancy (ICP) can predispose offspring to metabolic disease in adulthood, likely due to a combination of the effects of increased bile acids, maternal dyslipidemia and deranged maternal and fetal lipid homeostasis. Whereas ursodeoxycholic acid (UDCA) is a commonly used treatment for ICP, no studies have yet addressed whether it can also prevent the metabolic effects of ICP in the offspring and fetoplacental unit.
View Article and Find Full Text PDFMicrobes occupy diverse ecological niches and only through recent advances in next generation sequencing technologies have the true microbial diversity been revealed. Furthermore, lack of perceivable marine barriers to genetic dispersal (i.e.
View Article and Find Full Text PDFThe aquatic microbiome is composed of a multi-phylotype community of microbes, ranging from the numerically dominant viruses to the phylogenetically diverse unicellular phytoplankton. They influence key biogeochemical processes and form the base of marine food webs, becoming food for secondary consumers. Due to recent advances in next-generation sequencing, this previously overlooked component of our hydrosphere is starting to reveal its true diversity and biological complexity.
View Article and Find Full Text PDF