Nat Struct Mol Biol
January 2012
The HtrA protein family combines chaperone and protease activities and is essential for protein quality control in many organisms. Whereas the mechanisms underlying the proteolytic function of HtrA proteins are well characterized, their chaperone activity remains poorly understood. Here we describe cryo-EM structures of Escherichia coli DegQ in its 12- and 24-mer states in complex with model substrates, providing a structural model of HtrA chaperone action.
View Article and Find Full Text PDFTo react to distinct stress situations and to prevent the accumulation of misfolded proteins, all cells employ a number of proteases and chaperones, which together set up an efficient protein quality control system. The functionality of proteins in the cell envelope of Escherichia coli is monitored by the HtrA proteases DegS, DegP, and DegQ. In contrast with DegP and DegS, the structure and function of DegQ has not been addressed in detail.
View Article and Find Full Text PDFCrystal structures of active and inactive conformations of the human serine protease HTRA1 reveal that substrate binding to the active site is sufficient to stimulate proteolytic activity. HTRA1 attaches to liposomes, digests misfolded proteins into defined fragments and undergoes substrate-mediated oligomer conversion. In contrast to those of other serine proteases, the PDZ domain of HTRA1 is dispensable for activation or lipid attachment, indicative of different underlying mechanistic features.
View Article and Find Full Text PDFViral hemorrhagic fever is a clinical syndrome that poses serious global health threat. Among the causative agents, dengue virus (DV) has the highest incidence rate and its infection is the major cause of viral hemorrhagic fever in the world. Although the pathophysiological mechanisms of DV-induced diseases are not yet understood, it is well accepted that liver is a site of viral replication.
View Article and Find Full Text PDF