Publications by authors named "Flaud J"

A new cell has been designed for accurate spectroscopic measurements in the 80-400 K temperature range with variable path lengths from 3 to more than 141 m. The spectral coverage at these temperatures ranges from the visible to less than 10 cm(-1), thanks to the use of diamond windows. The design of the cryostat and vacuum setups allows vibration-free operation.

View Article and Find Full Text PDF

In this paper we describe the first quantitative search for several molecules in Titan's stratosphere in Cassini CIRS infrared spectra. These are: ammonia (NH3), methanol (CH3OH), formaldehyde (H2CO), and acetonitrile (CH3CN), all of which are predicted by photochemical models but only the last of which has been observed, and not in the infrared. We find non-detections in all cases, but derive upper limits on the abundances from low-noise observations at 25 degrees S and 75 degrees N.

View Article and Find Full Text PDF

Knowing the ozone absorption cross sections in the ultraviolet and infrared spectral range, with an accuracy of better than 1%, is of the utmost importance for atmospheric remote-sensing applications. For this reason, various ozone intensity intercomparisons and measurements have been published these last years. However, the corresponding results proved not to be consistent and thus have raised a controversial discussion in the community of atmospheric remote-sensing.

View Article and Find Full Text PDF

For data analysis of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) atmospheric limb emission spectroscopic experiment on Environmental Satellite microwindows, i.e., small spectral regions for data analysis, have been defined and optimized.

View Article and Find Full Text PDF

An optimized code to perform the near-real-time retrieval of profiles of pressure, temperature, and volume mixing ratio (VMR) of five key species (O(3), H(2)O, HNO(3), CH(4), and N(2)O) from infrared limb spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) experiment on board the European Space Agency (ESA) Environmental Satellite ENVISAT-1 was developed as part of a ESA-supported study. The implementation uses the global fit approach on selected narrow spectral intervals (microwindows) to retrieve each profile in sequence. The trade-off between run time and accuracy of the retrieval was optimized from both the physical and the mathematical points of view, with optimizations in the program structure, in the radiative transfer model, and in the computation of the retrieval Jacobian.

View Article and Find Full Text PDF

For the measurement of atmospheric ozone concentrations, the mid-infrared and ultraviolet regions are both used by ground-, air-, or satellite-borne instruments. In this study we report the first laboratory intercomparison of the ozone absorption coefficients using simultaneous measurements in these spectral regions. The intercomparison shows good agreement (around 98.

View Article and Find Full Text PDF

A high-resolution analysis of the {nu(2), nu(3)} and {nu(4), nu(6)} bands of the two isotopomers of chloryl fluoride F(35)ClO(2) and F(37)ClO(2) has been carried out for the first time using simultaneously infrared spectra recorded around 16&mgr;m and 26&mgr;m with a resolution of ca. 0.003 cm(-1) and microwave and submillimeter-wave transitions occurring within the vibrational states 2(1), 3(1), 4(1), and 6(1).

View Article and Find Full Text PDF

Using 0.002 cm(-1) resolution Fourier transform absorption spectra of an (17)O enriched ozone sample, an extensive analysis of the v(1)+v(3) bands of the (16)O(17)O(16)O and (16)O(16)O(17)O isotopomers of ozone has been performed for the first time. The experimental rotational levels of the (101) vibrational states were satisfactorily reproduced using a Hamiltonian matrix that takes into account the observed rovibrational resonances.

View Article and Find Full Text PDF

New experimental data on the nu(1) and nu(3) bands of (16)O(3) improving the value of absolute line intensities have been obtained. The intensities of 295 lines have been measured with an average accuracy between 2.5% and 3% and the rotational expansion of the transition moment operators for the nu(1) and nu(3) bands has been deduced.

View Article and Find Full Text PDF

Using new high-resolution Fourier transform spectra recorded at the University of Denver in the 2-µm region, a new and more extended analysis of the 2nu(1) + nu(3) and 3nu(3) bands of nitrogen dioxide, located at 4179.9374 and 4754.2039 cm(-1), respectively, has been performed.

View Article and Find Full Text PDF

The water-vapor spectra in the near-infrared and visible region were reanalyzed with the purpose of finding experimental evidences of unusual high-order resonance between "dark" high-bending and "bright" stretch vibration states. About 70 transitions to the (050), (060), (070), (080), (160), (061), (170), (071), and, even (0 10 0) bending states, and their resonating partners were assigned in the spectra that gives the experimental energy levels lying near or above the potential energy barrier to linearity. The assignments were confirmed by combination differences and simultaneous observation of both perturbed and perturbing levels.

View Article and Find Full Text PDF

New high-resolution Fourier transform absorption spectra of an (15)N(16)O(2) isotopic sample of nitrogen dioxide were recorded at the University of Bremen in the 6.3-µm region. Starting from the results of a previous study [Y.

View Article and Find Full Text PDF

We have measured absolute line intensities in the nu(2) fundamental band at 1238 cm(-1) of both isotopomers of hypochlorous acid, HOCl. To obtain the partial pressure of the species in the sample mixture, unavailable through direct measurement since HOCl exists only in equilibrium with H(2)O and Cl(2)O and may decay by secondary reactions, we relied on known absolute line intensities in the pure rotational far-infrared (FIR) spectrum determined from Stark effect measurements. We have thus recorded simultaneously the FIR pure rotation spectrum of HOCl using a Bruker IFS120HR interferometer and the spectrum of a few vibration-rotation lines in the infrared (IR) nu(2) band using a tunable diode laser spectrometer.

View Article and Find Full Text PDF

An analysis of the nu(17)-nu(4) difference bands near 800 cm(-1) of two isotopic species, (10)B(2)H(6) and (11)B(2)H(6), of diborane has been carried out using infrared spectra recorded with a resolution of ca. 0.003 cm(-1).

View Article and Find Full Text PDF

Spectra of (10)B monoisotopic diborane, B(2)H(6), have been recorded at high resolution (2-3 x 10(-3) cm(-1)) by means of Fourier transform spectroscopy in the region 700-1300 cm(-1). A thorough analysis of the nu(18) a-type, nu(14) c-type, and nu(5) symmetry-forbidden band has been performed. Of particular interest are the results concerning the nu(5) symmetry-forbidden band, which is observed only because it borrows intensity through an a-type Coriolis interaction with the very strong nu(18) infrared band located approximately 350 cm(-1) higher in wavenumber.

View Article and Find Full Text PDF

Using new high-resolution Fourier transform spectra recorded in Giessen in the 8-12 µm region, a more extended analysis of the nu(5) and nu(6) bands and the first high-resolution study of the nu(4) band of HDCO were performed. As pointed out previously [M. Allegrini, J.

View Article and Find Full Text PDF

The spectrum of the nu(10) band of diborane, arising from the ring-puckering vibration, has been obtained with a spectral resolution of 0.0015 cm(-1) in the region 275-400 cm(-1). The spectrum of a sample enriched in (10)B was recorded as well as one with naturally abundant boron, i.

View Article and Find Full Text PDF

Using 0.002 cm(-1) resolution Fourier transform absorption spectra of an (17)O-enriched ozone sample, an extensive analysis of the nu(3) band together with a partial identification of the nu(1) band of the (17)O(16)O(17)O isotopomer of ozone has been performed for the first time. As for other C(2v)-type ozone isotopomers [J.

View Article and Find Full Text PDF

The infrared spectrum of SCF(2) was recorded in the 1000-1400 cm(-1) region with a resolution of 2.5 x 10(-3) cm(-1). The rotationally resolved nu(1) and nu(4) band systems were studied for the first time, and altogether 11 500 transitions were assigned.

View Article and Find Full Text PDF

For the first time D(2)Se and HDSe as (80)Se monoisotopic and natural material were studied in the region of the nu(2) fundamental vibration by high-resolution (0.0033 cm(-1)) Fourier transform infrared spectroscopy. For D(2)Se which is an asymmetric rotor with C(2v) symmetry the nu(2) band is of B type while for HDSe (C(s) symmetry) it is a hybrid band, and both A- and B-type transitions were observed.

View Article and Find Full Text PDF

Ground state rotational constants of D(M)(2)Se and HD(M)Se, M = 76, 77, 78, 80, and 82, have been determined up to octic centrifugal distortion terms from ground state combination differences. These were obtained from rotational analyses of the nu(2), nu(1), and nu(3) bands both of natural and (80)Se monoisotopic material recorded with a resolution of ca. 3 x 10(-3) cm(-1).

View Article and Find Full Text PDF

The high-resolution Raman spectra of the nu4 bands of 11B2H6 and 11B10BH6 have been recorded and analyzed. The recordings have been made using a high-resolution spectrometer based on the inverse Raman effect. Q branches have been observed, but P and R branches were too weak to be seen, and simulations of the observed band contour have been necessary to complete the analysis.

View Article and Find Full Text PDF

Using a high-resolution (R = 0.0025 cm-1) Fourier transform spectrum of nitric acid recorded at room temperature in the 1100-1240 cm-1 region, it has been possible to perform a more extended analysis of the nu8 + nu9 band of HNO3 centered at 1205.7075 cm-1.

View Article and Find Full Text PDF

The intracavity laser absorption spectrum of H2 32S has been recorded near 13 200 cm-1 with an equivalent absorption pathlength of 25 km. The observed spectrum is assigned to the (50(+/-), v2 = 1) states constituting a local mode pair in strong H22-type interaction. The rovibrational analysis has allowed the assignment of 210 lines involving 86 rotational upper state levels which have been reproduced with a rms of 0.

View Article and Find Full Text PDF

The purpose of this work was to obtain reliable absolute intensities for the nu6 band of H2O2. It was undertaken because strong discrepancies exist between the different nu6 band intensities which are presently available in the literature (A. Perrin, A.

View Article and Find Full Text PDF