Publications by authors named "Flaminia Rondino"

Studying ionic liquids (ILs) through computational methods is one of the ways to accelerate progress in the design of novel and potentially green materials optimized for task-specific applications. Therefore, it is essential to develop simple and cost-effective computational procedures that are able to replicate and predict experimental data. Among these, spectroscopic measurements are of particular relevance since they are often implicated in structure-property relationships, especially in the infrared spectral region, where characteristic absorption and scattering processes due to molecular vibrations are ultimately influenced by the surrounding environment in the condensed phase.

View Article and Find Full Text PDF

Nanostructured titania is one of the most commonly encountered constituents of nanotechnology devices for use in energy-related applications, due to its intrinsic functional properties as a semiconductor and to other favorable characteristics such as ease of production, low toxicity and chemical stability, among others. Notwithstanding this diffusion, the quest for improved understanding of the physical and chemical mechanisms governing the material properties and thus its performance in devices is still active, as testified by the large number of dedicated papers that continue to be published. In this framework, we consider and analyze here the effects of the material morphology and structure in determining the energy transport phenomena as cross-cutting properties in some of the most important nanophase titania applications in the energy field, namely photovoltaic conversion, hydrogen generation by photoelectrochemical water splitting and thermal management by nanofluids.

View Article and Find Full Text PDF

Linear ω-phenylalkylamines of increasing alkyl chain length have been investigated employing synchrotron radiation in the photon energy range from 7 to 15 eV. These molecules have received considerable interest because they bear the skeleton of biologically relevant compounds including neurotransmitters and because of the possible interaction between the amino moiety and the phenyl ring. Recently, the contribution of this interaction has been assayed in both neutral and protonated species, pointing to a role of the polymethylene chain length.

View Article and Find Full Text PDF

The conformational landscape of (S)-1-(4-chlorophenyl)ethanol, its monohydrated complex, and its diastereomeric adducts with R- and S-butan-2-ol, have been investigated by resonant two-photon ionization (R2PI) spectroscopy coupled with time-of-flight mass spectrometry. Theoretical calculations at the D-B3LYP/6-31++G** level of theory have been performed to assist in the interpretation of the spectra and in the assignment of the structures. The R2PI spectra and the predicted structures have been compared with those obtained on the analogous non-halogenated and fluorinated systems, i.

View Article and Find Full Text PDF

The molecular diastereomeric complexes between R-1-phenyl-1-ethanol, S-1-(4-fluorophenyl)ethanol and S-1-(2-fluorophenyl)ethanol and R and S-butan-2-ol, isolated under molecular beam conditions in the gas phase, have been investigated by mass-selective resonant two-photon ionization (R2PI) and infrared depleted R2PI (IR-R2PI). The comparison of the three systems allowed us to highlight the significance of specific intermolecular interactions in the chiral discrimination process. The interpretation of the results is based on theoretical predictions mainly at the D-B3LYP/6-31++G** level of theory.

View Article and Find Full Text PDF

A study of (R)-3-methylcyclopentanone [(R)-3-MCP] by photoelectron spectroscopy and photoelectron circular dichroism (PECD) is presented. The synchrotron radiation gas-phase photoelectron spectra of (R)-3-MCP were measured and are discussed on the basis of different theoretical methodologies. The experimental dichroism of (R)-3-MCP for selected deconvoluted valence states and for the carbonyl carbon 1s core state are reported and reproduced well by calculated dispersions generated by considering the contributions of two different conformers.

View Article and Find Full Text PDF

The vibrational spectra of ciprofloxacin complexes with monovalent (Li(+), Na(+), K(+), Ag(+)) and polyvalent (Mg(2+), Al(3+)) metal ions are recorded in the range 1000-1900 cm(-1) by means of infrared multiple-photon dissociation (IRMPD) spectroscopy. The IRMPD spectra are analyzed and interpreted in the light of density functional theory (DFT)-based quantum chemical calculations in order to identify the possible structures present under our experimental conditions. For each metal-ciprofloxacin complex, four isomers are predicted, considering different chelation patterns.

View Article and Find Full Text PDF

The IRMPD spectra of the ESI-formed proton-bound complexes of the R,R,R,R- and S,S,S,S-enantiomers of a bis(diamido)-bridged basket resorcin[4]arene (R and S) with cytosine (1), cytidine (2), and cytarabine (3) were measured in the region 2800-3600 cm(-1). Comparison of the IRMPD spectra with the corresponding ONIOM (B3LYP/6-31(d):UFF)-calculated absorption frequencies allowed the assessment of the vibrational modes that are responsible for the observed spectroscopic features. All of the complexes investigated, apart from [R⋅H⋅3](+), showed similar IRMPD spectra, which points to similar structural and conformational landscapes.

View Article and Find Full Text PDF

Diastereomeric adducts between (S)-1-(4-fluorophenyl)-ethanol and R and S 2-butanol, formed by supersonic expansion, have been investigated by means of a combination of mass selected resonant two-photon ionization-spectroscopy and infrared depletion spectroscopy. Chiral recognition is evidenced by the specific spectroscopic signatures of the S(1)← S(0) electronic transition as well as different frequencies and intensities of the OH stretch vibrational mode in the ground state. D-DFT calculations have been performed to assist in the analysis of the spectra and the determination of the structures.

View Article and Find Full Text PDF

The effects of the presence of the ring fluorine atom on the conformational landscape of supersonically expanded isomeric 1-(fluorophenyl)ethanols and their monohydrated clusters are investigated by resonant two-photon ionization (R2PI) spectroscopy, coupled with time-of-flight (TOF) mass spectrometry. In contrast to the very simple spectrum of 1-phenylethanol, the lack of structural symmetry of the aromatic rings of isomeric 1-(fluorophenyl)ethanols generates more complicated spectra, characterized by several low-frequency progressions of bands. Their interpretation is based on the strict correspondence with theoretical predictions at the D-B3LYP/6-31G** level of theory.

View Article and Find Full Text PDF

In life sciences, diastereomeric chiral molecule/chiral receptor complexes are held together by a different combination of intermolecular forces and are therefore endowed with different stability and reactivity. Determination of these forces, which are normally affected in the condensed phase by solvent and supramolecular interactions, can be accomplished through the generation of diastereomeric complexes in the isolated state and their spectroscopic investigation. This review presents a detailed discussion of the mass resolved Resonant Two Photon Ionization (R2PI-TOF) technique in supersonic beams and introduces an overview of various other technologies currently available for the spectroscopic study of gas phase chiral molecules and supramolecular systems.

View Article and Find Full Text PDF

Wavelength and mass selected resonant two-photon ionization spectra of molecular clusters between R-1-phenyl-2,2,2-trifluoroethanol (FER) and methylamine (M) or the enantiomers of 2-aminobutane (AR and AS) were recorded after supersonic molecular beam expansion and analyzed with the aid of ab initio molecular orbital calculations. The experimental results agree with theoretical calculations pointing to the predominance of the two most stable conformers of monosolvated FER whose CF3 group establishes intense NH..

View Article and Find Full Text PDF

Free electron attachment to the three different isomers of mononitrotoluene molecules in the gas phase is studied using a crossed electron-molecule beams technique. In contrast to previous studies for a large number of negative ions, the presently measured relative cross section curves are recorded with an electron energy resolution of better than 100 meV. For several product anions including the nitro anion NO(2)-, remarkable differences for the three isomers are observed.

View Article and Find Full Text PDF

The R2PI-TOF spectra of supersonically expanded rare gas/chiral arene heteroclusters have been rationalized in terms of the distortion of the pi-electron density reflecting the different dipole and quadrupole momenta induced in the rare gas atoms by interaction with the opposite pi-faces of the chiral arene itself.

View Article and Find Full Text PDF

One- and two-color, mass selected R2PI spectra of the S(1) <-- S(0) transitions in the bare (R)-(+)-1-phenyl-1-propanol and its complexes with bidentate solvent molecules, like the (R)-(-)- and (S)-(+)-3-hydroxytetrahydrofuran enantiomers, have been recorded after a supersonic molecular beam expansion. The one-color R2PI excitation spectra of the diastereomeric complexes are characterized by three main peaks, one red-shifted and the other two blue-shifted relative to the band origin of the most stable anti conformer of the bare chromophore. The opposite direction of these spectral shifts is ascribed to the occurrence of three different hydrogen bonded isomeric structures for each individual complex, while their different magnitude depends on the configuration of the bidentate solvent molecule as well as its specific hydrogen bond interaction center, whether the ethereal oxygen atom or the hydroxyl group.

View Article and Find Full Text PDF

Asymmetric molecular and supramolecular systems are characterized by: i. the circular dicroism in the angular distribution of valence photoelectrons emitted from randomly oriented chiral molecules by their interaction with circularly polarized VUV light; ii. the different stability and reactivity of diastereomeric aggregates.

View Article and Find Full Text PDF

Chiral recognition is a fundamental phenomenon in life sciences, based on the enantioselective complexation of a chiral molecule with a chiral selector. The diastereomeric aggregates, formed by complexation, are held together by a different combination of intermolecular forces and are therefore endowed with different stability and reactivity. Determination of these forces, which are normally affected in the condensed phase by solvent and supramolecular interactions, requires the generation of the diastereomeric complexes in the isolated state and their spectroscopic investigation.

View Article and Find Full Text PDF