Publications by authors named "Flamant F"

The nuclear receptors of thyroid hormone exert a broad influence on brain development and then on adult brain physiology. However, the cell-autonomous function of the receptors is combined with their indirect influence on cellular interactions. Mouse genetics allows one to distinguish between these 2 modes of action.

View Article and Find Full Text PDF

Gestating mice were exposed to three chemicals, tetrabromo-bisphenol A (TBBPA; 2 mg/kg/day), amitrole (25 and 50 mg/kg/day) and pyraclostrobin (0.4 and 2 mg/kg/day) to assess their capacity to act as thyroid hormone disruptors and compromise neurodevelopment. Propyl-thio-uracyl, a known pharmacological inhibitor of thyroid gland secretion, was used at both high and low dose as a reference thyroid hormone system disruptor (1 ppm, 1500 ppm).

View Article and Find Full Text PDF

Dominant optic atrophy (DOA) is one of the most prevalent forms of hereditary optic neuropathies and is mainly caused by heterozygous variants in OPA1, encoding a mitochondrial dynamin-related large GTPase. The clinical spectrum of DOA has been extended to a wide variety of syndromic presentations, called DOAplus, including deafness as the main secondary symptom associated to vision impairment. To date, the pathophysiological mechanisms underlying the deafness in DOA remain unknown.

View Article and Find Full Text PDF

Mice were exposed to a low dose of the model thyroid hormone disruptor, propylthiouracil. Although this had only a modest effect on maternal thyroid hormones production, postnatal analysis of the pups' plasma by mass spectrometry and the brain striatum by RNA sequencing gave evidence of low lasting changes that could reflect an adverse effect on neurodevelopment. Overall, these methods proved to be sensitive enough to detect minor disruptions of thyroid hormone signalling in vivo.

View Article and Find Full Text PDF

Thyroid hormone (TH) signaling plays a major role in mammalian brain development. Data obtained in the past years in animal models have pinpointed GABAergic neurons as a major target of TH signaling during development, which opens up new perspectives to further investigate the mechanisms by which TH affects brain development. The aim of the present review is to gather the available information about the involvement of TH in the maturation of GABAergic neurons.

View Article and Find Full Text PDF

In rats, hypothyroidism during fetal and neonatal development can disrupt neuronal migration and induce the formation of periventricular heterotopia in the brain. However, it remains uncertain if heterotopia also manifest in mice after developmental hypothyroidism and whether they could be used as a toxicological endpoint to detect TH-mediated effects caused by TH system disrupting chemicals. Here, we performed a mouse study where we induced severe hypothyroidism by exposing pregnant mice (n = 3) to a very high dose of propylthiouracil (PTU) (1500 ppm) in the diet.

View Article and Find Full Text PDF

Thyroid hormone increases energy expenditure. Its action is mediated by TR, nuclear receptors present in peripheral tissues and in the central nervous system, particularly in hypothalamic neurons. Here, we address the importance of thyroid hormone signaling in neurons, in general for the regulation of energy expenditure.

View Article and Find Full Text PDF

Thyroid hormones are known to trigger metamorphosis in an amphibian. This review discusses the hypothesis according to which they act in a similar manner to synchronize the post-natal development of mice, using brain, brown adipose tissue, and heart as examples.

View Article and Find Full Text PDF

Thyroid hormone (T3) and its nuclear receptors (TR) are important regulators of energy expenditure and adaptive thermogenesis, notably through their action in the brown adipose tissue (BAT). However, T3 acts in many other peripheral and central tissues which are also involved in energy expenditure. The general picture of how T3 regulates BAT thermogenesis is currently not fully established, notably due to the absence of extensive omics analyses and the lack of specific mice model.

View Article and Find Full Text PDF

Inactivating mutations in the specific thyroid hormone transporter monocarboxylate transporter 8 (MCT8) lead to an X-linked rare disease named MCT8 deficiency or Allan-Herndon-Dudley Syndrome. Patients exhibit a plethora of severe endocrine and neurological alterations, with no effective treatment for the neurological symptoms. An optimal mammalian model is essential to explore the pathological mechanisms and potential therapeutic approaches.

View Article and Find Full Text PDF

We gathered available RNA-seq and ChIP-seq data in a single database to better characterize the target genes of thyroid hormone receptors in several cell types. This database can serve as a resource to analyze the mode of action of thyroid hormone (T3). Additionally, it is an easy-to-use and convenient tool to obtain information on specific genes regarding T3 regulation or to extract large gene lists of interest according to the users' criteria.

View Article and Find Full Text PDF

Resistance to thyroid hormone due to mutations in , which encodes the thyroid hormone receptor α (TRα1), shows variable clinical presentation. Mutations affecting TRβ1 and TRβ2 cause deafness in mice and have been associated with deafness in humans. To test whether TRα1 also affects hearing function, we used mice heterozygous for a frameshift mutation in that is similar to human mutations ( mice) and reduces tissue sensitivity to thyroid hormone.

View Article and Find Full Text PDF

When bound to thyroid hormone, the nuclear receptor TRα1 activates the transcription of a number of genes in many cell types. It mainly acts by binding DNA as a heterodimer with retinoid X receptors at specific response elements related to the DR4 consensus sequence. However, the number of DR4-like elements in the genome exceed by far the number of occupied sites, indicating that minor variations in nucleotides composition deeply influence the DNA-binding capacity and transactivation activity of TRα1.

View Article and Find Full Text PDF

Nanopesticides are innovative pesticides involving engineered nanomaterials in their formulation to increase the efficiency of plant protection products, while mitigating their environmental impact. Despite the predicted growth of the nanopesticide use, no data is available on their inhalation toxicity and the potential cocktail effects between their components. In particular, the neurodevelopmental toxicity caused by prenatal exposures might have long lasting consequences.

View Article and Find Full Text PDF

Chemicals acting as thyroid hormone disruptors (THDs) are of a particular concern for public health, considering the importance of this hormone in neurodevelopment and metabolic processes. They might either alter the circulating level of thyroid hormone (TH) or interfere with the cellular response to the hormonal stimulation. In order to assess this later possibility we selected 39 pesticides and combined several tests.

View Article and Find Full Text PDF

Thyroid hormones (TH) contribute to the control of adaptive thermogenesis, which is associated with both higher energy expenditure and lower body mass index. While it was clearly established that TH act directly in the target tissues to fulfill its metabolic activities, some studies have rather suggested that TH act in the hypothalamus to control these processes. This paradigm shift has subjected the topic to intense debates.

View Article and Find Full Text PDF

Thyroid hormones are important for homeostatic control of energy metabolism and body temperature. Although skeletal muscle is considered a key site for thyroid action, the contribution of thyroid hormone receptor signaling in muscle to whole-body energy metabolism and body temperature has not been resolved. Here, we show that T3-induced increase in energy expenditure requires thyroid hormone receptor alpha 1 (TRα ) in skeletal muscle, but that T3-mediated elevation in body temperature is achieved in the absence of muscle-TRα .

View Article and Find Full Text PDF

The progesterone receptor (PR) is an inducible transcription factor that plays critical roles in female reproductive processes and in several aspects of breast cancer tumorigenesis. Our report describes the type I protein arginine methyltransferase 1 (PRMT1) as a cofactor controlling progesterone pathway, through the direct methylation of PR. Mechanistic assays in breast cancer cells indicate that PRMT1 methylates PR at the arginine 637 and reduces the stability of the receptor, thereby accelerating its recycling and finally its transcriptional activity.

View Article and Find Full Text PDF

ERGO (EndocRine Guideline Optimization) is the acronym of a European Union-funded research and innovation action, that aims to break down the wall between mammalian and non-mammalian vertebrate regulatory testing of endocrine disruptors (EDs), by identifying, developing and aligning thyroid-related biomarkers and endpoints (B/E) for the linkage of effects between vertebrate classes. To achieve this, an adverse outcome pathway (AOP) network covering various modes of thyroid hormone disruption (THD) in multiple vertebrate classes will be developed. The AOP development will be based on existing and new data from in vitro and in vivo experiments with fish, amphibians and mammals, using a battery of different THDs.

View Article and Find Full Text PDF

Resistance to thyroid hormone alpha (RTHα) is a rare and under-recognized genetic disease caused by mutations of , the gene encoding thyroid hormone receptor α1 (TRα1). We report here two novel missense mutations (M259T, T273A) in patients with RTHα. We combined biochemical and cellular assays with modeling to assess the capacity of mutant TRα1 to bind triiodothyronine (T3), to heterodimerize with RXR, to interact with transcriptional coregulators, and to transduce a T3 transcriptional response.

View Article and Find Full Text PDF

Recent articles show that thyroid hormone is a key determinant of regeneration. The regeneration capacity in adults of two cell types, cerebellum neurons and cardiomyocytes, disappeared during mammalian evolution. However, it persists at early stages of development.

View Article and Find Full Text PDF

Mammalian brain development critically depends on proper thyroid hormone signaling, via the TRα1 nuclear receptor. The downstream mechanisms by which TRα1 impacts brain development are currently unknown. In order to investigate these mechanisms, we used mouse genetics to induce the expression of a dominant-negative mutation of TRα1 specifically in GABAergic neurons, the main inhibitory neurons in the brain.

View Article and Find Full Text PDF

Resistance to thyroid hormone alpha (RTHα) is a rare genetic disease due to mutations in the gene, which encodes thyroid hormone receptor alpha 1 (TRα1). Since its first description in 2012, 46 cases of RTHα have been reported worldwide, corresponding to 26 different mutations of TRα1. RTHα patients share some common symptoms with hypothyroid patients, without significant reduction in thyroid hormone level.

View Article and Find Full Text PDF