An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThis work discusses the parameters and characteristics required on the development of a scalable and reliable electrochemical sensor board for detecting 8-hydroxy-2'-deoxyguanosine (8-OHdG), an oxidative stress biomarker for diabetic nephropathy, cancer and Parkinson's disease. We used Printed Circuit Board (PCB) technology to make a precise, low-cost bare sensor board. ZnO nanorods (NRs) and ZnO NRs: reduced graphene oxide (RGO) composites were used as a pathway for antibody immobilization on the working electrode (WE).
View Article and Find Full Text PDFFabrication and testing of micro-reactors for the characterization of nanosensors is presented in this work. The reactors have a small volume (100 μl) and are equipped with gas input/output channels. They were machined from a single piece of kovar in order to avoid leaks in the system due to additional welding.
View Article and Find Full Text PDFElectrical characteristics of multi-walled carbon nanotubes (MWNTs) grown by chemical vapor deposition have been investigated as a function of the bias voltage, nanotubes length and temperature, in 2 and 4 terminal configurations. Nanotubes were deposited over metal electrodes using ac dielectrophoresis method. For better contacts between the nanotubes and electrodes, Ni and Pd films were deposited by an electroless deposition technique.
View Article and Find Full Text PDF