Leather tanneries are known for chemical laden work environments and pulmonic complaints among workers. This study presents an analysis of tannery micro-environments emphasizing on size-based variation in composition of particulate matter and consequent respiratory dysfunctions. Qualitative (FTIR, SEM-EDX) and quantitative assessment (elemental composition, carbon forms) of PM has been employed.
View Article and Find Full Text PDFInt J Chron Obstruct Pulmon Dis
November 2021
Background: Particulate matter-associated microbes in the workplace are a burning issue in occupational toxicology. Studies have reported on respiratory infections among tannery cohorts. This study uniquely presents measurements of airborne bacterial concentrations associated with varied particulate-matter sizes, their exposure, and consequent severity in occupational respiratory problems, all for different microenvironments within leather tanneries.
View Article and Find Full Text PDFBackground: Antimicrobial resistance (AMR) is an emerging threat to public health worldwide. A significant evidence has suggested that the knowledge and attitude trends among the community, pharmacists and physicians can play a critical role in managing the ever increasing threat of AMR.
Methods: A cross-sectional survey was performed using three specific self-administered questionnaires for community members, pharmacists/pharmacy owners and physicians on a randomly selected sample population of 473, 424 and 308 respectively.
The incidental nanoparticles' (INPs) emission at work and the consequent health impairments is a burning issue of occupational toxicology. The present study is a thorough review of available literature marking an assortment of indicators on INPs generation at leather tanneries and measurable occupational ailments. The literature reported evidences unleash a similarity between the mechanisms of leather tannery induced health damages and toxico-kinetics of incidental nanoparticles in human body.
View Article and Find Full Text PDFA new strategy to enhance the antifouling potential of polyether sulfone (PES) membrane is presented. Chemically synthesized silver nanoparticles (AgNPs) were used to prepare a mixed-matrix PES membrane by the phase inversion technique. Primarily, AgNPs synthesis was confirmed by surface plasmon resonance at 410-430 nm using UV-Visible spectroscopy.
View Article and Find Full Text PDF