Publications by authors named "Fivush A"

As part of our ongoing efforts to identify novel ligands for the metabotropic glutamate 2 and 3 (mGlu) receptors, we have incorporated substitution at the C3 and C4 positions of the (1S,2R,5R,6R)-2-amino-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid scaffold to generate mGlu antagonists.

View Article and Find Full Text PDF

Negative modulators of metabotropic glutamate 2 & 3 receptors demonstrate antidepressant-like activity in animal models and hold promise as novel therapeutic agents for the treatment of major depressive disorder. Herein we describe our efforts to prepare and optimize a series of conformationally constrained 3,4-disubstituted bicyclo[3.1.

View Article and Find Full Text PDF

A novel series of selective negative allosteric modulators (NAMs) for metabotropic glutamate receptor 5 (mGlu5) was discovered from an isothiazole scaffold. One compound of this series, (1R,2R)-N-(4-(6-isopropylpyridin-2-yl)-3-(2-methyl-2H-indazol-5-yl)isothiazol-5-yl)-2-methylcyclopropanecarboxamide (24), demonstrated satisfactory pharmacokinetic properties and, following oral dosing in rats, produced dose-dependent and long-lasting mGlu5 receptor occupancy. Consistent with the hypothesis that blockade of mGlu5 receptors will produce analgesic effects in mammals, compound 24 produced a dose-dependent reduction in paw licking responses in the formalin model of persistent pain.

View Article and Find Full Text PDF

The demonstrated functional interaction of metabotropic glutamate 5 (mGlu₅) receptors with N-methyl-d-aspartate (NMDA) receptors has prompted speculation that their activation may offer a potential treatment for aspects of schizophrenia. Development of selective mGlu₅ agonists has been difficult, but several different positive allosteric modulator (PAM) molecules have now been identified. This study describes two novel mGlu₅ PAMs, LSN2463359 (N-(1-methylethyl)-5-(pyridin-4-ylethynyl)pyridine-2-carboxamide) and LSN2814617 [(7S)-3-tert-butyl-7-[3-(4-fluorophenyl)-1,2,4-oxadiazol-5-yl]-5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-A]pyridine], which are useful tools for this field of research.

View Article and Find Full Text PDF

We report the synthesis and biological activity of a new series of small molecule agonists of the human Peroxisome Proliferator-Activated Receptor delta (PPARdelta). Several hits were identified from our original libraries containing lipophilic carboxylic acids. Optimization of these hits by structure-guided design led to 7k (GW501516) and 7l (GW0742), which shows an EC(50) of 1.

View Article and Find Full Text PDF

A potent, selective, orally active LXR agonist was identified from focused libraries of tertiary amines. GW3965 (12) recruits the steroid receptor coactivator 1 to human LXRalpha in a cell-free ligand-sensing assay with an EC(50) of 125 nM and profiles as a full agonist on hLXRalpha and hLXRbeta in cell-based reporter gene assays with EC(50)'s of 190 and 30 nM, respectively. After oral dosing at 10 mg/kg to C57BL/6 mice, 12 increased expression of the reverse cholesterol transporter ABCA1 in the small intestine and peripheral macrophages and increased the plasma concentrations of HDL cholesterol by 30%.

View Article and Find Full Text PDF

Background: The peroxisome proliferator-activated receptors (PPARs) were cloned as orphan members of the nuclear receptor superfamily of transcription factors. The identification of subtype-selective ligands for PPARalpha and PPARgamma has led to the discovery of their roles in the regulation of lipid metabolism and glucose homeostasis. No subtype-selective PPARdelta ligands are available and the function of this subtype is currently unknown.

View Article and Find Full Text PDF