Publications by authors named "Fitriari Izzatunnisa Muhaimin"

Background: Urea is a fertilizer widely used by farmers, especially vegetable farmers, due to its high nitrogen content, around 46 %. However, plants only use a small amount of nitrogen, a maximum of 35 %, while the remaining nitrogen is wasted and released into the environment. Undeniably, it causes increases production costs and environmental problems.

View Article and Find Full Text PDF

Differentiation of naïve peripheral B cells into terminally differentiated plasma cells is characterized by epigenetic alterations, yet the epigenetic mechanisms that control B-cell fate remain unclear. Here, we identified a role for the histone H3K79 methyltransferase DOT1L in controlling B-cell differentiation. Mouse B cells lacking Dot1L failed to establish germinal centers (GC) and normal humoral immune responses in vivo.

View Article and Find Full Text PDF

Development of progenitor B cells (ProB cells) into precursor B cells (PreB cells) is dictated by immunoglobulin heavy chain checkpoint (IgHCC), where the IgHC encoded by a productively rearranged allele assembles into a PreB cell receptor complex (PreBCR) to generate signals to initiate this transition and suppressing antigen receptor gene recombination, ensuring that only one productive allele is expressed, a phenomenon known as allelic exclusion. In contrast to a productively rearranged allele, the messenger RNA (mRNA) () from a nonproductively rearranged allele is degraded by nonsense-mediated decay (NMD). This fact prohibited firm conclusions regarding the contribution of stable to the molecular and developmental changes associated with the IgHCC.

View Article and Find Full Text PDF

C9orf82 protein, or conserved anti-apoptotic protein 1 or caspase activity and apoptosis inhibitor 1 (CAAP1) has been implicated as a negative regulator of the intrinsic apoptosis pathway by modulating caspase expression and activity. In contrast, an independent genome wide screen for factors capable of driving drug resistance to the topoisomerase II (Topo II) poisons doxorubicin and etoposide, implicated a role for the nuclear protein C9orf82 in delaying DSBs repair downstream of Topo II, hereby sensitizing cells to DSB induced apoptosis. To determine its function in a genetically defined setting in vivo and ex vivo, we here employed CRISPR/Cas9 technology in zygotes to generate a C9orf82 knockout mouse model.

View Article and Find Full Text PDF