The purpose of this study was to evaluate the performance of HF183 Bacteroides for estimating pathogen exposures during recreational water activities. We compared the use of Bacteroides-based exposure assessment to exposure assessment that relied on pathogen measurements. We considered two types of recreational water sites: those impacted by combined sewer overflows (CSOs) and those not impacted by CSOs.
View Article and Find Full Text PDFAntimicrobial resistance is a growing public health problem that requires an integrated approach among human, agricultural, and environmental sectors. However, few studies address all three components simultaneously. We investigated the occurrence of five antibiotic resistance genes (ARGs) and the class 1 integron gene (intI1) in private wells drawing water from a vulnerable aquifer influenced by residential septic systems and land-applied dairy manure.
View Article and Find Full Text PDFInfection risk from waterborne pathogens can be estimated via quantitative microbial risk assessment (QMRA) and forms an important consideration in the management of public groundwater systems. However, few groundwater QMRAs use site-specific hazard identification and exposure assessment, so prevailing risks in these systems remain poorly defined. We estimated the infection risk for 9 waterborne pathogens based on a 2-year pathogen occurrence study in which 964 water samples were collected from 145 public wells throughout Minnesota, USA.
View Article and Find Full Text PDFAnaerobic digestion has been suggested as an intervention to attenuate antibiotic resistance genes (ARGs) in livestock manure but supporting data have typically been collected at laboratory scale. Few studies have quantified ARG fate during full-scale digestion of livestock manure. We sampled untreated manure and digestate from seven full-scale mesophilic dairy manure digesters to assess ARG fate through each system.
View Article and Find Full Text PDFBackground: Groundwater quality in the Silurian dolomite aquifer in northeastern Wisconsin, USA, has become contentious as dairy farms and exurban development expand.
Objectives: We investigated private household wells in the region, determining the extent, sources, and risk factors of nitrate and microbial contamination.
Methods: Total coliforms, , and nitrate were evaluated by synoptic sampling during groundwater recharge and no-recharge periods.
Background: Private wells are an important source of drinking water in Kewaunee County, Wisconsin. Due to the region's fractured dolomite aquifer, these wells are vulnerable to contamination by human and zoonotic gastrointestinal pathogens originating from land-applied cattle manure and private septic systems.
Objective: We determined the magnitude of the health burden associated with contamination of private wells in Kewaunee County by feces-borne gastrointestinal pathogens.
Drinking water supply wells can be contaminated by a broad range of waterborne pathogens. However, groundwater assessments frequently measure microbial indicators or a single pathogen type, which provides a limited characterization of potential health risk. This study assessed contamination of wells by testing for viral, bacterial, and protozoan pathogens and fecal markers.
View Article and Find Full Text PDFIn the United States, approximately 48 million people are served by private wells. Unlike public water systems, private well water quality is not monitored, and there are few studies on the extent and sources of contamination of private wells. We extensively investigated five private wells to understand the variability in microbial contamination, the role of septic systems as sources of contamination, and the effect of rainfall on well water quality.
View Article and Find Full Text PDFRegulations for public water systems (PWS) in the U.S. consider Cryptosporidium a microbial contaminant of surface water supplies.
View Article and Find Full Text PDFFecal contamination by human and animal pathogens, including viruses, bacteria, and protozoa, is a potential human health hazard, especially with regards to drinking water. Pathogen occurrence in groundwater varies considerably in space and time, which can be difficult to characterize as sampling typically requires hundreds of liters of water to be passed through a filter. Here we describe the design and deployment of an automated sampler suited for hydrogeologically and chemically dynamic groundwater systems.
View Article and Find Full Text PDFCombined sewer overflows (CSOs) are a known source of human fecal pollution and human pathogens in urban water bodies, which may present a significant public health threat. To monitor human fecal contamination in water, bacterial fecal indicator organisms (FIOs) are traditionally used. However, because FIOs are not specific to human sources and do not correlate with human pathogens, alternative fecal indicators detected using qPCR are becoming of interest to policymakers.
View Article and Find Full Text PDFBackground: Spray irrigation for land-applying livestock manure is increasing in the United States as farms become larger and economies of scale make manure irrigation affordable. Human health risks from exposure to zoonotic pathogens aerosolized during manure irrigation are not well understood.
Objectives: We aimed to ) estimate human health risks due to aerosolized zoonotic pathogens downwind of spray-irrigated dairy manure; and ) determine which factors (e.
The limit of detection (LOD) for qPCR-based analyses is not consistently defined or determined in studies on waterborne pathogens. Moreover, the LODs reported often reflect the qPCR assay alone rather than the entire sample process. Our objective was to develop an approach to determine the 95% LOD (lowest concentration at which 95% of positive samples are detected) for the entire process of waterborne pathogen detection.
View Article and Find Full Text PDF