Antimicrob Agents Chemother
January 2025
β-Lactams present several desirable pharmacodynamic features leading to the rapid eradication of many bacterial pathogens. Imipenem (IPM) and cefoxitin (FOX) are injectable β-lactams recommended during the intensive treatment phase of pulmonary infections caused by (Mab). However, their potency against Mab is many-fold lower than against Gram-positive and Gram-negative pathogens for which they were optimized, putting into question their clinical utility.
View Article and Find Full Text PDFTuberculous meningitis (TBM) has a high mortality, possibly due to suboptimal therapy. Drug exposure data of antituberculosis agents in the central nervous system (CNS) are required to develop more effective regimens. Rifabutin is a rifamycin equivalently potent to rifampin in human pulmonary tuberculosis.
View Article and Find Full Text PDFLinezolid is a drug with proven human antitubercular activity whose use is limited to highly drug-resistant patients because of its toxicity. This toxicity is related to its mechanism of action─linezolid inhibits protein synthesis in both bacteria and eukaryotic mitochondria. A highly selective and potent series of oxazolidinones, bearing a 5-aminomethyl moiety (in place of the typical 5-acetamidomethyl moiety of linezolid), was identified.
View Article and Find Full Text PDFHost-directed therapies (HDTs) represent an emerging approach for bacterial clearance during tuberculosis (TB) infection. While most HDTs are designed and implemented for immuno-modulation, other host targets-such as nonimmune stromal components found in pulmonary granulomas-may prove equally viable. Building on our previous work characterizing and normalizing the aberrant granuloma-associated vasculature, here we demonstrate that FDA-approved therapies (bevacizumab and losartan, respectively) can be repurposed as HDTs to normalize blood vessels and extracellular matrix (ECM), improve drug delivery, and reduce bacterial loads in TB granulomas.
View Article and Find Full Text PDFDespite their therapeutic benefits, antibiotics exert collateral damage on the microbiome and promote antimicrobial resistance. However, the mechanisms governing microbiome recovery from antibiotics are poorly understood. Treatment of , the world's most common infection, represents the longest antimicrobial exposure in humans.
View Article and Find Full Text PDFAntimicrob Agents Chemother
December 2023
Tuberculosis meningitis (TBM) is essentially treated with the first-line regimen used against pulmonary tuberculosis, with a prolonged continuation phase. However, clinical outcomes are poor in comparison, for reasons that are only partially understood, highlighting the need for improved preclinical tools to measure drug distribution and activity at the site of disease. A predictive animal model of TBM would also be of great value to prioritize promising drug regimens to be tested in clinical trials, given the healthy state of the development pipeline for the first time in decades.
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2023
Tuberculosis lung lesions are complex and harbor heterogeneous microenvironments that influence antibiotic effectiveness. Major strides have been made recently in understanding drug pharmacokinetics in pulmonary lesions, but the bacterial phenotypes that arise under these conditions and their contribution to drug tolerance are poorly understood. A pharmacodynamic marker called the RS ratio quantifies ongoing rRNA synthesis based on the abundance of newly synthesized precursor rRNA relative to mature structural rRNA.
View Article and Find Full Text PDFThe colocation of elemental species with host biomolecules such as lipids and metabolites may shed new light on the dysregulation of metabolic pathways and how these affect disease pathogeneses. Alkali metals have been the subject of extensive research, are implicated in various neurodegenerative and infectious diseases and are known to disrupt lipid metabolism. Desorption electrospray ionisation (DESI) is a widely used approach for molecular imaging, but previous work has shown that DESI delocalises ions such as potassium (K) and chlorine (Cl), precluding the subsequent elemental analysis of the same section of tissue.
View Article and Find Full Text PDFElemental imaging is widely used for imaging cells and tissues but rarely in combination with organic mass spectrometry, which can be used to profile lipids and measure drug concentrations. Here, we demonstrate how elemental imaging and a new method for spatially resolved lipidomics (DAPNe-LC-MS, based on capillary microsampling and liquid chromatography mass spectrometry) can be used in combination to probe the relationship between metals, drugs, and lipids in discrete areas of tissues. This new method for spatial lipidomics, reported here for the first time, has been applied to rabbit lung tissues containing a lesion (caseous granuloma) caused by tuberculosis infection.
View Article and Find Full Text PDFBones are the site of multiple diseases requiring chemotherapy, including cancer, arthritis, osteoporosis and infections. Yet limited methodologies are available to investigate the spatial distribution and quantitation of small molecule drugs in bone compartments, due to the difficulty of sectioning undecalcified bones and the interference of decalcification methods with spatially resolved drug quantitation. To measure drug concentrations in distinct anatomical bone regions, we have developed a workflow that enables spatial quantitation of thin undecalcified bone sections by laser-capture microdissection coupled to HPLC/tandem mass spectrometry, and spatial mapping on adjacent sections by mass spectrometry imaging.
View Article and Find Full Text PDFNontuberculous mycobacterial pulmonary disease (NTM-PD) is a potentially fatal infectious disease requiring long treatment duration with multiple antibiotics and against which there is no reliable cure. Among the factors that have hampered the development of adequate drug regimens is the lack of an animal model that reproduces the NTM lung pathology required for studying antibiotic penetration and efficacy. Given the documented similarities between tuberculosis and NTM immunopathology in patients, we first determined that the rabbit model of active tuberculosis reproduces key features of human NTM-PD and provides an acceptable surrogate model to study lesion penetration.
View Article and Find Full Text PDFMass spectrometry imaging investigations of tissues infected with agents that require high-security biocontainment, such as , have been limited due to incompatible sterilization techniques. Here we describe an on-slide heat sterilization method that enables mass spectrometry imaging investigations of pharmaceuticals, lipids, and metabolites in infected tissue samples outside of biocontainment. An evaluation of different temperatures and incubation times determined that 100 °C for 1 h was essential to sterilize 5 times the bacterial burden observed in tuberculosis (TB) cavity sections.
View Article and Find Full Text PDFElemental and molecular imaging play a crucial role in understanding disease pathogenesis. To accurately correlate elemental and molecular markers, it is desirable to perform sequential elemental and molecular imaging on a single-tissue section. However, very little is known about the impact of performing these measurements in sequence.
View Article and Find Full Text PDFMultiple drug discovery initiatives for tuberculosis are currently ongoing to identify and develop new potent drugs with novel targets in order to shorten treatment duration. One of the drug classes with a new mode of action is DprE1 inhibitors targeting an essential process in cell wall synthesis of Mycobacterium tuberculosis. In this investigation, three DprE1 inhibitors currently in clinical trials, TBA-7371, PBTZ169, and OPC-167832, were evaluated side-by-side as single agents in the C3HeB/FeJ mouse model presenting with caseous necrotic pulmonary lesions upon tuberculosis infection.
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2021
Amikacin and kanamycin are second-line injectables used in the treatment of multidrug-resistant tuberculosis (MDR-TB) based on the clinical utility of streptomycin, another aminoglycoside and first-line anti-TB drug. While streptomycin was tested as a single agent in the first controlled TB clinical trial, introduction of amikacin and kanamycin into MDR-TB regimens was not preceded by randomized controlled trials. A recent large retrospective meta-analysis revealed that compared with regimens without any injectable drug, amikacin provided modest benefits, and kanamycin was associated with worse outcomes.
View Article and Find Full Text PDFSQ109 is a novel well-tolerated drug candidate in clinical development for the treatment of drug-resistant tuberculosis (TB). It is the only inhibitor of the MmpL3 mycolic acid transporter in clinical development. No SQ109-resistant mutant has been directly isolated thus far , in mice, or in patients, which is tentatively attributed to its multiple targets.
View Article and Find Full Text PDFAntimicrob Agents Chemother
April 2020
Doxycycline, an FDA-approved tetracycline, is used in tuberculosis models for the temporal control of mycobacterial gene expression. In these models, animals are infected with recombinant carrying genes of interest under transcriptional control of the doxycycline-responsive TetR- unit. To minimize fluctuations of plasma levels, doxycycline is usually administered in the diet.
View Article and Find Full Text PDFFluoroquinolones represent the pillar of multidrug-resistant tuberculosis (MDR-TB) treatment, with moxifloxacin, levofloxacin, or gatifloxacin being prescribed to MDR-TB patients. Recently, several clinical trials of "universal" drug regimens, aiming to treat drug-susceptible and drug-resistant TB, have included a fluoroquinolone. In the absence of clinical data comparing their side-by-side efficacies in controlled MDR-TB trials, a pharmacological rationale is needed to guide the selection of the most efficacious fluoroquinolone.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb) remains a grave threat to world health with emerging drug resistant strains. One prominent feature of Mtb infection is the extensive reprogramming of host tissue at the site of infection. Here we report that inhibition of matrix metalloproteinase (MMP) activity by a panel of small molecule inhibitors enhances the in vivo potency of the frontline TB drugs isoniazid (INH) and rifampicin (RIF).
View Article and Find Full Text PDFSeveral key antituberculosis drugs, including pyrazinamide, with a molecular mass of 123.1 g/mol, are smaller than the usual drug-like molecules. Current drug discovery efforts focus on the screening of larger compounds with molecular masses centered around 400 to 500 g/mol.
View Article and Find Full Text PDFPreviously, we showed that a major in vitro and in vivo mechanism of resistance to pyrazinoic acid (POA), the bioactive component of the critical tuberculosis (TB) prodrug pyrazinamide (PZA), involves missense mutations in the aspartate decarboxylase PanD, an enzyme required for coenzyme A biosynthesis. What is the mechanism of action of POA? Upon demonstrating that treatment of M. bovis BCG with POA resulted in a depletion of intracellular coenzyme A and confirming that this POA-mediated depletion is prevented by either missense mutations in PanD or exogenous supplementation of pantothenate, we hypothesized that POA binds to PanD and that this binding blocks the biosynthetic pathway.
View Article and Find Full Text PDF