Finger dexterity, and finger individuation in particular, is crucial for human movement, and disruptions due to brain injury can significantly impact quality of life. Understanding the neurological mechanisms responsible for recovery is vital for effective neurorehabilitation. This study explores the role of two key pathways in finger individuation: the corticospinal (CS) tract from the primary motor cortex and premotor areas, and the subcortical reticulospinal (RS) tract from the brainstem.
View Article and Find Full Text PDFHumans use their fingers to perform a variety of tasks, from simple grasping to manipulating objects, to typing and playing musical instruments, a variety wider than any other species. The more sophisticated the task, the more it involves individuated finger movements, those in which one or more selected fingers perform an intended action while the motion of other digits is constrained. Here we review the neurobiology of such individuated finger movements.
View Article and Find Full Text PDFHuman motor behavior involves planning and execution of actions, some more frequently. Manipulating probability distribution of a movement through intensive direction-specific repetition causes physiological bias toward that direction, which can be cortically evoked by transcranial magnetic stimulation (TMS). However, because evoked movement has not been used to distinguish movement execution and plan histories to date, it is unclear whether the bias is because of frequently executed movements or recent planning of movement.
View Article and Find Full Text PDFFinger dexterity is manifested by coordinated patterns of muscle activity and generalization of learning across contexts. Some fingers flex, others extend, and some are immobile. Whether or not the neural control processes of these direction-specific actions are independent remains unclear.
View Article and Find Full Text PDFThe lateral prefrontal cortex (PFC) plays a variety of crucial roles in higher-order cognitive functions. Previous works have attempted to modulate lateral PFC function by applying non-invasive transcranial direct current stimulation (tDCS) and demonstrated positive effects on performance of tasks involving cognitive processes. The neurophysiological underpinning of the stimulation effects, however, remain poorly understood.
View Article and Find Full Text PDFJ Neurophysiol
February 2022
Acquisition of multiple motor skills without interference is a remarkable ability in daily life. During adaptation to opposing perturbations, a common paradigm to study this ability, each perturbation can be successfully learned when a contextual follow-through movement is associated with the direction of the perturbation. It is still unclear, however, to what extent this learning engages the cognitive explicit process and the implicit process.
View Article and Find Full Text PDFNeurorehabil Neural Repair
August 2020
. Stroke is one of the most common causes of physical disability worldwide. The majority of survivors experience impairment of movement, often with lasting deficits affecting hand dexterity.
View Article and Find Full Text PDFIn sensorimotor adaptation paradigms, participants learn to adjust their behavior in response to an external perturbation. Locomotor adaptation and reaching adaptation depend on the cerebellum and are accompanied by changes in functional connectivity in cortico-cerebellar circuits. In order to gain a better understanding of the particular cerebellar projections involved in locomotor adaptation, we assessed the contribution of specific white matter pathways to the magnitude of locomotor adaptation and to long-term motor adaptation effects (recall and relearning).
View Article and Find Full Text PDFMotor exploration, a trial-and-error process in search for better motor outcomes, is known to serve a critical role in motor learning. This is particularly relevant during reinforcement learning, where actions leading to a successful outcome are reinforced while unsuccessful actions are avoided. Although early on motor exploration is beneficial to finding the correct solution, maintaining high levels of exploration later in the learning process might be deleterious.
View Article and Find Full Text PDFOur sensorimotor system appears to be influenced by the recent history of our movements. Repeating movements toward a particular direction is known to have a dramatic effect on involuntary movements elicited by cortical stimulation-a phenomenon that has been termed use-dependent plasticity. However, analogous effects of repetition on behavior have proven elusive.
View Article and Find Full Text PDFHumans can acquire knowledge of new motor behavior via different forms of learning. The two forms most commonly studied have been the development of internal models based on sensory-prediction errors (error-based learning) and success-based feedback (reinforcement learning). Human behavioral studies suggest these are distinct learning processes, though the neurophysiological mechanisms that are involved have not been characterized.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Consistent repetitions of an action lead to plastic change in the motor cortex and cause shift in the direction of future movements. This process is known as use-dependent plasticity (UDP), one of the basic forms of the motor memory. We have recently demonstrated in a physiological study that success-related reinforcement signals could modulate the strength of UDP.
View Article and Find Full Text PDFMotor behaviors are shaped not only by current sensory signals but also by the history of recent experiences. For instance, repeated movements toward a particular target bias the subsequent movements toward that target direction. This process, called use-dependent plasticity (UDP), is considered a basic and goal-independent way of forming motor memories.
View Article and Find Full Text PDFUnlabelled: Although motor adaptation is typically rapid, accumulating evidence shows that it is also associated with long-lasting behavioral and neuronal changes. Two processes were suggested to explain the formation of long-term motor memories: recall, reflecting a retrieval of previous motor actions, and faster relearning, reflecting an increased sensitivity to errors. Although these manifestations of motor memories were initially demonstrated in the context of adaptation experiments in reaching, indications of long-term motor memories were also demonstrated recently in other kinds of adaptation such as in locomotor adaptation.
View Article and Find Full Text PDFUnlabelled: How motion and sensory inputs are combined to assess an object's stiffness is still unknown. Here, we provide evidence for the existence of a stiffness estimator in the human posterior parietal cortex (PPC). We showed previously that delaying force feedback with respect to motion when interacting with an object caused participants to underestimate its stiffness.
View Article and Find Full Text PDFCerebral Palsy (CP) results from an insult to the developing brain and is associated with deficits in locomotor and manual skills and in sensorimotor adaptation. We hypothesized that the poor sensorimotor adaptation in persons with CP is related to their high execution variability and does not reflect a general impairment in adaptation learning. We studied the interaction between performance variability and adaptation deficits using a multi-session locomotor adaptation design in persons with CP.
View Article and Find Full Text PDFFaster relearning of an external perturbation, savings, offers a behavioral linkage between motor learning and memory. To explain savings effects in reaching adaptation experiments, recent models suggested the existence of multiple learning components, each shows different learning and forgetting properties that may change following initial learning. Nevertheless, the existence of these components in rhythmic movements with other effectors, such as during locomotor adaptation, has not yet been studied.
View Article and Find Full Text PDFIt has been suggested that a feedforward control mechanism drives the adaptation of the spatial and temporal interlimb locomotion variables. However, the internal representation of limb kinetics during split-belt locomotion has not yet been studied. In hand movements, it has been suggested that kinetic and kinematic parameters are controlled by separate neural processes; therefore, it is possible that separate neural processes are responsible for kinetic and kinematic locomotion parameters.
View Article and Find Full Text PDFSeveral studies conducted during the past decade have suggested that episodic memory is better equipped to handle the future than the past. Here, we consider this premise in the context of motor memory. State-of-the-art computational models for trial-by-trial motor adaptation to constant and stochastic force field perturbations in a horizontal reaching paradigm have shown that motor memory registers a weighted sum of past experiences to predict force perturbation in a subsequent trial.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
December 2011
To date, research on the motor control of hand function in cerebral palsy has focused on children with hemiplegia, although many persons with diplegic cerebral palsy (dCP) have asymmetrically decreased hand function. We explored the predictive capabilities of the motor system in a simple motor task of lifting a series of virtual objects for five persons with spastic dCP and five age-matched controls. When a person lifts an object, s/he uses an expectation of the weight of the object to generate a motor command.
View Article and Find Full Text PDFThe human motor control system gracefully behaves in a dynamic and time varying environment. Here, we explored the predictive capabilities of the motor system in a simple motor task of lifting a series of virtual objects. When a subject lifts an object, she/he uses an expectation of the weight of the object to generate a motor command.
View Article and Find Full Text PDF