Publications by authors named "Fiorotto R"

Article Synopsis
  • Cystic fibrosis-related liver disease (CFLD) is worsened by inflammation from gut-derived stimuli due to defective CFTR, leading to liver pathology and increased morbidity in cystic fibrosis patients.
  • Studies on different mouse models (WT, CFTR-KO, and CFTR-KO-GC) revealed that gut dysbiosis and inflammation are present in CFTR-KO mice, while the gut-corrected mice showed no liver issues.
  • Treatment with nonabsorbable antibiotics improved gut permeability and liver inflammation in CFTR-KO mice, suggesting that targeting gut health could be a key therapeutic approach for CFLD.
View Article and Find Full Text PDF
Article Synopsis
  • Cholangiopathies are serious liver diseases, but existing human disease models are limited, prompting research into three-dimensional biliary organoids which may provide better insights.
  • By embedding biliary organoids into a specialized extracellular matrix, researchers created organoids that, when removed from this matrix, displayed a shift in organization and improved characteristics for studying liver function.
  • The study suggests that these new organoid models can enhance our understanding of bile transport, immune interactions, and the effects of the extracellular matrix on biliary health, potentially leading to better treatments for cholangiopathies.
View Article and Find Full Text PDF

Fluid and bicarbonate secretion is a principal function of cholangiocytes, and impaired secretion results in cholestasis. Cholangiocyte secretion depends on peri-apical expression of the type 3 inositol trisphosphate receptor (ITPR3), and loss of this intracellular Ca release channel is a final common event in most cholangiopathies. Here we investigated the mechanism by which ITPR3 localizes to the apical region to regulate secretion.

View Article and Find Full Text PDF

Congenital hepatic fibrosis (CHF), a genetic cholangiopathy characterized by fibropolycystic changes in the biliary tree, is caused by mutations in the PKHD1 gene, leading to defective fibrocystin (FPC), changes in planar cell polarity (PCP) and increased β-catenin-dependent chemokine secretion. In this study, we aimed at understanding the role of Scribble (a protein involved in PCP), Yes-associated protein (YAP), and β-catenin in the regulation of the fibroinflammatory phenotype of FPC-defective cholangiocytes. Immunohistochemistry showed that compared with wild type (WT) mice, in FPC-defective (Pkhd1 ) mice nuclear expression of YAP/TAZ in cystic cholangiocytes, significantly increased and correlated with connective tissue growth factor (CTGF) expression and pericystic fibrosis, while Scribble expression on biliary cyst cells was markedly decreased.

View Article and Find Full Text PDF

Bile acids participate in the intestinal emulsion, digestion, and absorption of lipids and fat-soluble vitamins. When present in high concentrations, as in cholestatic liver diseases, bile acids can damage cells and cause inflammation. After the discovery of bile acids receptors about two decades ago, bile acids are considered signaling molecules.

View Article and Find Full Text PDF

The family of vascular endothelial growth factors (VEGFs) includes 5 members (VEGF-A to -D, and placenta growth factor), which regulate several critical biological processes. VEGF-A exerts a variety of biological effects through high-affinity binding to tyrosine kinase receptors (VEGFR-1, -2 and -3), co-receptors and accessory proteins. In addition to its fundamental function in angiogenesis and endothelial cell biology, VEGF/VEGFR signalling also plays a role in other cell types including epithelial cells.

View Article and Find Full Text PDF

Lack of a prompt and accurate diagnosis remains on top of the list of challenges faced by patients with rare liver diseases. Although rare liver diseases affect a significant percentage of the population as a group, when taken singularly they represent unique diseases and the approaches used for diagnosis of common liver diseases are insufficient. However, the development of new methods for the acquisition of molecular and clinical data (i.

View Article and Find Full Text PDF

Background & Aims: IL-17A-producing T cells are present in autoimmune cholestatic liver diseases; however, little is known about the contribution of IL-17 to periductal immune responses. Herein, we investigated the role of IL-17 produced by antigen-specific CD8 T cells in a mouse model of cholangitis and in vitro in human cholangiocyte organoids.

Methods: K14-OVAp mice express a major histocompatibility complex I-restricted ovalbumin (OVA) peptide sequence (SIINFEKL) on cholangiocytes.

View Article and Find Full Text PDF

Molecular and cellular research modalities for the study of liver pathologies have been tremendously improved over the recent decades. Advanced technologies offer novel opportunities to establish cell isolation techniques with excellent purity, paving the path for 2D and 3D microscopy and high-throughput assays (e.g.

View Article and Find Full Text PDF

Bile duct epithelial cells, also known as cholangiocytes, regulate the composition of bile and its flow. Acquired, congenital and genetic dysfunctions in these cells give rise to a set of diverse and complex diseases, often of unknown aetiology, called cholangiopathies. New knowledge has been steadily acquired about genetic and congenital cholangiopathies, and this has led to a better understanding of the mechanisms of acquired cholangiopathies.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a monogenic disease caused by mutation of Cftr. CF-associated liver disease (CFLD) is a common nonpulmonary cause of mortality in CF and accounts for approximately 2.5%-5% of overall CF mortality.

View Article and Find Full Text PDF

Background & Aims: In cholangiocarcinoma, early metastatic spread via lymphatic vessels often precludes curative therapies. Cholangiocarcinoma invasiveness is fostered by an extensive stromal reaction, enriched in cancer-associated fibroblasts (CAFs) and lymphatic endothelial cells (LECs). Cholangiocarcinoma cells recruit and activate CAFs by secreting PDGF-D.

View Article and Find Full Text PDF

Cholestasis is a frequent clinical condition initiating or complicating chronic liver diseases, particularly cholangiopathies, where the biliary epithelium is the primary target of the pathogenetic sequence. Until a few decades ago, understanding of cholestasis relied mostly on the experimental model of bile duct ligation in rodents. However, a simple model of biliary obstruction cannot reproduce the complex mechanisms and networks leading to cholestasis in cholangiopathies.

View Article and Find Full Text PDF

Liver diseases negatively impact the quality of life and survival of patients, and often require liver transplantation in cases that progress to organ failure. Understanding the cellular and molecular mechanisms of liver development and pathogenesis has been a challenging task, in part for the lack of adequate cellular models directly relevant to the human diseases. Recent technological advances in the stem cell field have shown the potentiality of induced pluripotent stem cells (iPSC) and liver organoids as the next generation tool to model in vitro liver diseases.

View Article and Find Full Text PDF

Liver disease is a severe complication in patients with Cystic Fibrosis (CF), a genetic disease caused by mutations in the gene encoding for cystic fibrosis transmembrane conductance regulator (CFTR) channel. The sequence of events leading to CFLD is still unclear and has limited the development of more specific treatments other than the bile acid UDCA. However, in the last twenty years, several gaps have been filled, which have mainly been possible due to the availability of different animal models that mimic CF.

View Article and Find Full Text PDF

Despite recent advances, pathogenesis of cholangiocarcinoma, a highly lethal cancer, remains enigmatic. Furthermore, treatment options are still limited and often disappointing. For this reason, in the last few years there has been a mounting interest towards the generation of experimental models able to reproduce the main features associated with this aggressive behavior.

View Article and Find Full Text PDF

Background And Objective: Persistent hepatic progenitor cells (HPC) activation resulting in ductular reaction (DR) is responsible for pathologic liver repair in cholangiopathies. Also, HPC/DR expansion correlates with fibrosis in several chronic liver diseases, including steatohepatitis. Increasing evidence indicates Notch signaling as a key regulator of HPC/DR response in biliary and more in general liver injuries.

View Article and Find Full Text PDF

Unlabelled: Congenital hepatic fibrosis (CHF), a genetic disease caused by mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, encoding for the protein fibrocystin/polyductin complex, is characterized by biliary dysgenesis, progressive portal fibrosis, and a protein kinase A-mediated activating phosphorylation of β-catenin at Ser675. Biliary structures of Pkhd1 mice, a mouse model of CHF, secrete chemokine (C-X-C motif) ligand 10 (CXCL10), a chemokine able to recruit macrophages. The aim of this study was to clarify whether CXCL10 plays a pathogenetic role in disease progression in CHF/Caroli disease and to understand the mechanisms leading to increased CXCL10 secretion.

View Article and Find Full Text PDF

Unlabelled: Cystic fibrosis transmembrane conductance regulator (CFTR), the channel mutated in cystic fibrosis (CF), is expressed by the biliary epithelium (i.e., cholangiocytes) of the liver.

View Article and Find Full Text PDF

Prognosis of cholangiocarcinoma, a devastating liver epithelial malignancy characterized by early invasiveness, remains very dismal, though its incidence has been steadily increasing. Evidence is mounting that in cholangiocarcinoma, tumor epithelial cells establish an intricate web of mutual interactions with multiple stromal components, largely determining the pervasive behavior of the tumor. The main cellular components of the tumor microenvironment (i.

View Article and Find Full Text PDF

The most studied physiological function of biliary epithelial cells (cholangiocytes) is to regulate bile flow and composition, in particular the hydration and alkalinity of the primary bile secreted by hepatocytes. After almost three decades of studies it is now become clear that cholangiocytes are also involved in epithelial innate immunity, in inflammation, and in the reparative processes in response to liver damage. An increasing number of evidence highlights the ability of cholangiocyte to undergo changes in phenotype and function in response to liver damage.

View Article and Find Full Text PDF

Chronic diseases of the biliary tree (cholangiopathies) represent one of the major unmet needs in clinical hepatology and a significant knowledge gap in liver pathophysiology. The common theme in cholangiopathies is that the target of the disease is the biliary tree. After damage to the biliary epithelium, inflammatory changes stimulate a reparative response with proliferation of cholangiocytes and restoration of the biliary architecture, owing to the reactivation of a variety of morphogenetic signals.

View Article and Find Full Text PDF