Publications by authors named "Fiorio R"

Low-density polyethylene (LDPE), extensively employed in flexible plastic packaging, often undergoes printing with inks. However, during the mechanical recycling of post-consumer waste, these inks act as contaminants, subsequently compromising the quality and usability of recycled material. To understand better exactly which ink components cause which effects, this study comprehensively assesses the thermal behavior of three organic pigments and two commonly utilised binders, correlated with the impact on the mechanical recycling of LDPE-based flexible plastic packaging.

View Article and Find Full Text PDF

Thermoplastic polyurethanes (TPUs) are remarkably versatile polymers due to the wide range of raw materials available for their synthesis, resulting in physicochemical characteristics that can be tailored according to the specific requirements of their final applications. In this study, a renewable bio-based polyol obtained from soybean oil is used for the synthesis of TPU via reactive extrusion, and the influence of the bio-based polyol on the multi-phase structure and properties of the TPU is studied. As raw materials, 4,4'-diphenylmethane (MDI), 1,4-butanediol, a fossil-based polyester polyol, and a bio-based polyol are used.

View Article and Find Full Text PDF

To optimize the thermal conductivity of high-density polyethylene, 15 hybrid filler composites containing either aluminum oxide, graphite, expanded graphite, carbon nanotubes or a combination of the former, have been studied using an extrusion-compression processing tandem. The experimental density of the cube-shaped specimens is substantially lower than the theoretical density calculated by the linear mixing rule, mainly for the composites with high filler contents. The morphology of the composites, as studied by scanning electron microscopy (SEM), highlighted a good dispersion quality and random orientation of the fillers in the test specimens but also revealed air inclusions in the composites, explaining the density results.

View Article and Find Full Text PDF

Thermoplastic polyurethanes (TPUs) are versatile polymers presenting a broad range of properties as a result of their countless combination of raw materials—in essence, isocyanates, polyols, and chain extenders. This study highlights the effect of two different chain extenders and their combination on the structure−property relationships of TPUs synthesized by reactive extrusion. The TPUs were obtained from 4,4-diphenylmethane diisocyanate (MDI), polyester diols, and the chain extenders 1,4-butanediol (BDO) and dipropylene glycol (DPG).

View Article and Find Full Text PDF

Additive manufacturing (AM) of polymeric materials offers many benefits, from rapid prototyping to the production of end-use material parts. Powder bed fusion (PBF), more specifically selective laser sintering (SLS), is a very promising AM technology. However, up until now, most SLS research has been directed toward polyamide powders.

View Article and Find Full Text PDF

To improve the product quality of polymeric parts realized through extrusion-based additive manufacturing (EAM) utilizing pellets, a good control of the melting is required. In the present work, we demonstrate the strength of a previously developed melt removal using a drag framework to support such improvement. This model, downscaled from conventional extrusion, is successfully validated for pellet-based EAM-hence, micro-extrusion-employing three material types with different measured rheological behavior, i.

View Article and Find Full Text PDF

Commercially mass-polymerized acrylonitrile-butadiene-styrene (ABS) polymers, pristine or modified by stabilization systems, have been injection molded and repeatedly exposed to ultravilolet A (UVA) radiation, mechanical recycling, and extra injection molding steps to study the impact of such treatments on the physicochemical, mechanical, colorimetric, and thermal-oxidative characteristics. The work focus on mimicking the effect of solar radiation behind a window glass as relevant during the lifetime of ABS polymers incorporated in electrical and electronic equipment, and interior automotive parts by using UVA technique. The accelerated aging promotes degradation and embrittlement of the surface exposed to radiation and causes physical aging, deteriorating mechanical properties, with an expressive reduction of impact strength (unnotched: up to 900%; notched: up to 250%) and strain at break (>1000%), as well as an increase in the yellowing index (e.

View Article and Find Full Text PDF

Based on differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, polarizing microscope (POM), and scanning electron microscopy (SEM) analysis, strategies to close the gap on applying conventional processing optimizations for the field of 3D printing and to specifically increase the mechanical performance of extrusion-based additive manufacturing of poly(lactic acid) (PLA) filaments by annealing and/or blending with poly(3-hydroxybutyrate) (PHB) were reported. For filament printing at 210 °C, the PLA crystallinity increased significantly upon annealing. Specifically, for 2 h of annealing at 100 °C, the fracture surface became sufficiently coarse such that the PLA notched impact strength increased significantly (15 kJ m).

View Article and Find Full Text PDF

In the present work, statistical analysis (16 processing conditions and 2 virgin unmodified samples) is performed to study the influence of antioxidants (AOs) during acrylonitrile-butadiene-styrene terpolymer (ABS) melt-blending (220 °C) on the degradation of the polybutadiene (PB) rich phase, the oxidation onset temperature (OOT), the oxidation peak temperature (OP), and the yellowing index (YI). Predictive equations are constructed, with a focus on three commercial AOs (two primary: Irganox 1076 and 245; and one secondary: Irgafos 168) and two commercial ABS types (mass- and emulsion-polymerized). Fourier transform infrared spectroscopy (FTIR) results indicate that the nitrile absorption peak at 2237 cm is recommended as reference peak to identify chemical changes in the PB content.

View Article and Find Full Text PDF

The presence and inducibility of specific CYPs (1A1, 1A2, 1B1, 2B22, 3A22, 3A29 and 3A46) and the related transcriptional factors (AhR, CAR, PXR, and HNF4alpha) were investigated, at activity and/or transcriptional level, in liver, respiratory and olfactory mucosa of control and beta-naphthoflavone (betaNF)-treated pigs an agonist of AhR, or rifampicin (RIF), an agonist of PXR. Experiments with real-time PCR showed that CYP1A1 mRNA was enhanced by betaNF, although at different extent, in liver, respiratory and olfactory tissues, whereas mRNAs of CYP1A2 and 1B1 were increased only in liver. Accordingly, in microsomes of both nasal tissues, the transcriptional activation of CYP1A1 was accompanied by an induction of ethoxyresorufin deethylase activity (a marker of this isoform) but not of methoxyresorufin demethylase activity (a marker of CYP1A2).

View Article and Find Full Text PDF

The presence and inducibility of CYP enzymes belonging to the family 1 (CYP 1A1, 1A2 and 1B1) and AhR have been studied in liver, lung, kidney and heart of control and beta-naphthoflavone (beta NF)-treated pigs. Segments of so far undescribed genes for porcine CYP 1A2, 1B1 and AhR were identified by RT-PCR and their sequences found to be highly homologous to those of the corresponding human genes. The mRNA level of CYP 1A1 was induced by beta NF, although to a different extent, in liver, lung, kidney and heart.

View Article and Find Full Text PDF

Several CYP enzymes are expressed in the lung of mammals but studies on their regulation have been rather neglected. In this study, the CAR and PXR expression and the inducibility of CYP 2B and CYP 3A isoforms in the lung rats and rabbits were investigated. Rats were treated with phenobarbital, clotrimazole or a mixture of dexametasone plus pregnenolone 16alpha-carbonitrile, whereas rabbits were treated with phenobarbital or rifampicin.

View Article and Find Full Text PDF

In the last 10 years, there is an increasing interest in selenium (Se) because of its environmental, biological, and toxicological importance, and in particular, because of its antioxidant properties. However, inspite of extensive studies, the optimal concentration of Se to be used for its beneficial effects in not yet known. In addition, the mechanisms of Se antioxidant property require further study.

View Article and Find Full Text PDF

Magnesium is a microelement that is essential for biological functions and particularly for cellular metabolism. It has a central role in protein, lipid, carbohydrate, and nucleic acid synthesis, and it is important for muscular physiology and nerve excitability. Magnesium has an important role in the stability of biological membranes, it controls immune phenomena, and it activates over 300 enzymes.

View Article and Find Full Text PDF

Cancer development is a multistage process wherein mutational events play an important role. Various antimutagen components, in particular magnesium and selenium, have been reported to have anticarcinogenic properties. These two oligoelements display different behaviors according to their concentrations.

View Article and Find Full Text PDF

The effects of the antimutagenic flavoring cinnamaldehyde on the induction of HGPRT- mutants by methyl methanesulfonate (MMS), N-nitroso-N-methylurea (MNU), ethyl methanesulfonate (EMS) and UV light was investigated in the Chinese hamster V79 cell line. Cinnamaldehyde did not show any mutagenic or toxic effects in this experimental system by itself and did not modify mutation frequency when given to cells simultaneously with chemical mutagens. Under these conditions, the cytotoxicity of MMS, but not that of MNU and EMS, was increased.

View Article and Find Full Text PDF

Spermine is a polyamine found in bacteria, animal, and plant tissues. It is involved in a variety of biological processes, and its interaction with DNA stabilizes the secondary structure of the double helix. Spermine is one of the first reported antimutagens, reducing the mutation rate in several prokaryotic test systems, while in eukaryotic organisms conflicting results have been obtained.

View Article and Find Full Text PDF

Humans are exposed daily to electromagnetic fields (EMFs) originating from a variety of devices and systems. During the 1980s many reports of potential mutagenic, teratogenic, and carcinogenic effects of EMFs were published, sometimes with contrasting results. To date, no study has established unequivocally a causal relationship between EMFs and cancer.

View Article and Find Full Text PDF

The activity of cinnamaldehyde (CIN), a bioantimutagen in bacterial systems, was tested in the D7 strain of yeast Saccharomyces cerevisiae. Yeast cells were UV-irradiated and post-incubated in liquid growth medium for 2 and 4 h with different concentrations of cinnamaldehyde. During the post-incubation period, DNA-damage-specific functions may be induced.

View Article and Find Full Text PDF

Incubation of methoxypsoralen (5-MOP) in the presence of diploid yeast cells (Saccharomyces cerevisiae) before UV-A exposure leads to an incubation-time dependent decrease of photoinduced genotoxic effects. The reduction in photoinduced genotoxicity is stronger in cells grown in the presence of 20% glucose and containing high levels of cytochrome P-450 than in cells grown in the presence of 0.5% glucose and containing undetectable levels of cytochrome P-450.

View Article and Find Full Text PDF

The ability of vanadium compounds to induce genetic activity was investigated in D7 and D61M strains of Saccharomyces cerevisiae and in Chinese hamster V79 cell line. In our previous work, ammonium metavanadate (pentavalent form, V5) induced mitotic gene conversion and point reverse mutation in the D7 strain of yeast. The genotoxicity was reduced by the presence of S9 fraction, which probably reduced pentavalent vanadium to the tetravalent form.

View Article and Find Full Text PDF

Treatment of CD1 mice with acetone raised activities of hepatic microsomal p-nitrophenol hydroxylase, ethoxycoumarin de-ethylase, acetone hydroxylase and diethylnitrosamine de-ethylase (DENd) several-fold. P-450IIE1-linked acetone hydroxylase showed the highest inducibility. In microsomes from acetone-pretreated mice the cytochrome b5 and P-450 content was nearly doubled and their electrophoretic profile showed induction of a protein of Mr 53,000, probably P-450IIE1.

View Article and Find Full Text PDF

The effects of acetone treatment on microsomal cytochrome P-450-dependent mono-oxygenases of the rat liver have been investigated to elucidate the role of this system in the metabolism of diethylnitrosamine (DEN). Acetone markedly enhanced the hepatic P-450 content and the activities of p-nitrophenol hydroxylase, acetone hydroxylase, ethoxycoumarin deethylase and DEN deethylase (DENd), whereas activities of pentoxy-resorufin O-deethylase and ethoxy-resorufin O-deethylase were not affected. Two distinct apparent Km values (0.

View Article and Find Full Text PDF