Publications by authors named "Fiorella Di Pastena"

Introduction: Growth differentiation factor 15 (GDF15) is a cytokine of the TGFβ family. Here, we analyzed GDF15 levels in patients with locally advanced non-small cell lung cancer (LA-NSCLC) who participated in OCOG-ALMERA (NCT02115464), a phase II randomized clinical trial, that investigated metformin in combination with standard of care concurrent chemoradiotherapy (cCRT). OCOG-ALMERA was not able to demonstrate benefit in the metformin arm.

View Article and Find Full Text PDF

The MYC oncogene is frequently overexpressed in tumors and inhibition of its translation is considered an attractive therapeutic opportunity. Despite numerous reports proposing an internal ribosome entry site (IRES) within the MYC Upstream Region (MYC UR) to sustain MYC translation during cellular stress or chemotherapy, conflicting evidence remains regarding the validity of such a mechanism. Through comprehensive investigations in MYC-driven Colorectal Cancer (CRC) and Burkitt Lymphoma (BL) cells, we demonstrate that MYC UR does not facilitate cap-independent translation, but instead orchestrates resistance to PI3K inhibitors.

View Article and Find Full Text PDF

Despite intensive efforts, no inhibitors of the Wnt/β-catenin signaling pathway have been approved so far for the clinical treatment of cancer. We synthesized novel -(heterocyclylphenyl)benzenesulfonamides as β-catenin inhibitors. Compounds - showed strong inhibition of the luciferase activity.

View Article and Find Full Text PDF

Most cancer cells switch their metabolism from mitochondrial oxidative phosphorylation to aerobic glycolysis to generate ATP and precursors for the biosynthesis of key macromolecules. The aerobic conversion of pyruvate to lactate, coupled to oxidation of the nicotinamide cofactor, is a primary hallmark of cancer and is catalyzed by lactate dehydrogenase (LDH), a central effector of this pathological reprogrammed metabolism. Hence, inhibition of LDH is a potential new promising therapeutic approach for cancer.

View Article and Find Full Text PDF

Biguanides are a family of antidiabetic drugs with documented anticancer properties in preclinical and clinical settings. Despite intensive investigation, how they exert their therapeutic effects is still debated. Many studies support the hypothesis that biguanides inhibit mitochondrial complex I, inducing energy stress and activating compensatory responses mediated by energy sensors.

View Article and Find Full Text PDF

Background/purpose: Type 2 diabetes and obesity increase the risk of developing colorectal cancer. Metformin may reduce colorectal cancer but the mechanisms mediating this effect remain unclear. In mice and humans, a high-fat diet (HFD), obesity and metformin are known to alter the gut microbiome but whether this is important for influencing tumor growth is not known.

View Article and Find Full Text PDF

The Wnt/β-catenin pathway is often found deregulated in cancer. The aberrant accumulation of β-catenin in the cell nucleus results in the development of various malignancies. Specific drugs against this signaling pathway for clinical treatments have not been approved yet.

View Article and Find Full Text PDF

The antidiabetic drug phenformin displays potent anticancer activity in different tumors, but its mechanism of action remains elusive. Using Shh medulloblastoma as model, we show here that at clinically relevant concentrations, phenformin elicits a significant therapeutic effect through a redox-dependent but complex I-independent mechanism. Phenformin inhibits mitochondrial glycerophosphate dehydrogenase (mGPD), a component of the glycerophosphate shuttle, and causes elevations of intracellular NADH content.

View Article and Find Full Text PDF

Targeted approaches aiming at modulating NHERF1 activity, rather than its overall expression, would be preferred to preserve the normal functions of this versatile protein. We focused our attention on the NHERF1/PDZ1 domain that governs its membrane recruitment/displacement through a transient phosphorylation switch. We herein report the design and synthesis of novel NHERF1 PDZ1 domain inhibitors.

View Article and Find Full Text PDF
Article Synopsis
  • Medulloblastoma is a type of brain tumor in kids caused by problems with a signaling pathway called hedgehog (HH).
  • A drug called Vismodegib, which blocks part of this pathway, doesn't work well for all patients because cancer cells find ways around it.
  • Researchers discovered that a protein called MEKK1 can help shut down another important part of the HH pathway, which could lead to better treatments for this tumor.
View Article and Find Full Text PDF