Publications by authors named "Fiorella Descalzi"

To understand the regenerative effect of platelet-released molecules in bone repair one should investigate the cascade of events involving the resident osteoblast population during the reconstructive process. Here the in vitro response of human osteoblasts to a platelet lysate (PL) stimulus is reported. Quiescent or very slow dividing osteoblasts showed a burst of proliferation after PL stimulation and returned to a none or very slow dividing condition when the PL was removed.

View Article and Find Full Text PDF

Injured blood vessel repair and blood circulation re-establishment are crucial events for tissue repair. We investigated in primary cultures of human umbilical vein endothelial cells (HUVEC), the effects of platelet lysate (PL), a cocktail of factors released by activated platelets following blood vessel disruption and involved in the wound-healing process triggering. PL exerted a protective effect on HUVEC in an inflammatory milieu by inhibiting IL-1α-activated NF-κB pathway and by inducing the secretion of PGE₂, a pro-resolving molecule in the wound microenvironment.

View Article and Find Full Text PDF

Skin chronic wounds are non-healing ulcerative defects, which arise in association with a morbidity state, such as diabetes and vascular insufficiency or as the consequence of systemic factors including advanced age. Platelet Rich Plasma, a platelet-rich blood fraction, can significantly improve the healing of human skin chronic ulcers. Given that the subcutaneous adipose tissue is located beneath the skin and plays a role in the skin homeostasis, in this study, we investigated the response of human subcutaneous adipose tissue cells to platelet content in a model mimicking the milieu of a deep skin injury.

View Article and Find Full Text PDF

The idea of rescuing the body self-repair capability lost during evolution is progressively gaining ground in regenerative medicine. In particular, growth factors and bioactive molecules derived from activated platelets emerged as promising therapeutic agents acting as trigger for repair of tissue lesions and restoration of tissue functions. Aim of this study was to assess the potential of a platelet lysate (PL) for human articular cartilage repair considering its activity on progenitor cells and differentiated chondrocytes.

View Article and Find Full Text PDF

For repair of chronic or difficult-to-heal tissue lesions and defects, major constraints exist to a broad application of cell therapy and tissue engineering approaches, i.e., transplantation of "" expanded autologous stem/progenitor cells, alone or associated with carrier biomaterials.

View Article and Find Full Text PDF

Lipocalin-2 (LCN2) is a member of the lipocalin family whose expression is modulated in several conditions, including cell differentiation, innate immunity, stress, and cancer. Although it is known that it is expressed in bone, its function in this tissue remains poorly studied. To this end, we took advantage of transgenic mice lines that expressed LCN2 driven by a bone specific type I collagen (LCN2-Tg).

View Article and Find Full Text PDF

Wound healing is achieved through distinct programmed phases: hemostasis, inflammation, mesenchymal cell proliferation and migration, and tissue remodeling. At the injury site, clot formation and platelet degranulation release cytokines and growth factors and actively participating in the healing process and regulating the migration of inflammatory cells, such as neutrophils, macrophages, and lymphocytes. We previously demonstrated that, in an inflammatory environment, prostaglandin E2 (PGE2) secreted by mesenchymal stem cells (MSCs) promoted the macrophage switch from a proinflammatory to a proresolving phenotype.

View Article and Find Full Text PDF

Platelet Lysate (PL) contains a cocktail of growth factors and cytokines, which actively participates in tissue repair and its clinical application has been broadly described. The aim of this study was to assess the regenerative potential of PL for bone repair. We demonstrated that PL stimulation induces a transient increase of the inflammatory response in quiescent human osteoblasts, via NF-kB activation, COX-2 induction, PGE2 production and secretion of pro-inflammatory cytokines.

View Article and Find Full Text PDF

We recently reported that mouse bone marrow stromal cells, also known as bone marrow (BM)-derived mesenchymal stem cells (MSCs), seeded onto a scaffold and implanted in vivo, led to an ectopic bone deposition by host cells. This MSCs capacity was critically dependent on their commitment level, being present only in MSCs cultured in presence of fibroblast growth factor-2. Taking advantage of a chimeric mouse model, in this study we show that seeded MSCs trigger a cascade of events resulting in the mobilization of macrophages, the induction of their functional switch from a proinflammatory to a proresolving phenotype, and the subsequent formation of a bone regenerative niche through the recruitment, within the first 2 weeks of implantation, of endothelial progenitors and of cells with an osteogenic potential (CD146+CD105+), both of them derived from the BM.

View Article and Find Full Text PDF

In regenerative medicine, platelet by-products containing factors physiologically involved in wound healing, have been successfully used in the form of platelet-rich plasma (PRP) for the topical therapy of various clinical conditions since it produces an improvement in tissue repair as well as analgesic effects. Measurement of endocannabinoids and related compounds in PRP revealed the presence of a significant amount of anandamide, 2-arachidonoylglycerol, palmitoylethanolamide, and oleoylethanolamide. Investigation of the activity of PRP on the keratinocyte cell line NCTC2544 in physiological and inflammatory conditions showed that, under inflammatory conditions, PRP induced in a statistically significant manner the production of these compounds by the cells suggesting that PRP might induce the production of these analgesic mediators particularly in the physiologically inflamed wounded tissue.

View Article and Find Full Text PDF

Galline Ex-FABP was identified as another candidate antibacterial, catecholate siderophore binding lipocalin (siderocalin) based on structural parallels with the family archetype, mammalian Siderocalin. Binding assays show that Ex-FABP retains iron in a siderophore-dependent manner in both hypertrophic and dedifferentiated chondrocytes, where Ex-FABP expression is induced after treatment with proinflammatory agents, and specifically binds ferric complexes of enterobactin, parabactin, bacillibactin and, unexpectedly, monoglucosylated enterobactin, which does not bind to Siderocalin. Growth arrest assays functionally confirm the bacteriostatic effect of Ex-FABP in vitro under iron-limiting conditions.

View Article and Find Full Text PDF

Platelet lysates (PL), which are derived from platelets, are cocktails of growth factors and cytokines that can promote tissue regeneration. Until today, most studies have focused on growth factor content of platelets rather than on their potential as a reservoir of mediators and cytokines. Taking advantage of an in vitro scratch assay performed under both normal and inflammatory conditions, in the present work, we report that at physiologic concentrations, PL enhanced wound closure rates of NCTC 2544 human keratinocytes.

View Article and Find Full Text PDF

Lipocalin-2 (LCN2) is a member of the lipocalin family, small secreted proteins functioning as modulators of many different physiological processes including cell differentiation, proliferation and apoptosis. LCN2 expression is also up-regulated in several pathological conditions, including inflammation and cancer. LCN2 synthesis has been described in epithelia, bone and cells of the immune system.

View Article and Find Full Text PDF

Studying cartilage differentiation, we observed the emergence of inflammation-related proteins suggesting that a common pathway was activated in cartilage differentiation and inflammation. In the present paper, we investigated the expression pathway of the inflammation-related enzyme Cyclooxygenase-2 (COX-2) during differentiation and inflammatory response of the chondrocytic cell line MC615. Cells were cultured either as (i) proliferating prechondrogenic cells expressing type I collagen or (ii) differentiated hyperconfluent cells expressing Sox9 and type II collagen.

View Article and Find Full Text PDF