Publications by authors named "Fiorela Ghilini"

Arthroplasty is a highly successful treatment to restore the function of a joint. The contamination of the implant via bacterial adhesion is the first step toward the development of device-associated infections. The emerging concern about antimicrobial resistance resulted in a growing interest to develop alternative therapeutic strategies.

View Article and Find Full Text PDF

The use of implants in orthopedics and dental practice is a widespread surgical procedure to treat diverse diseases. However, peri-implantitis due to infections and/or poor osseointegration can lead to metallic implant failure. The aim of this study was to develop a multifunctional coating on titanium (Ti) surfaces, to simultaneously deal with both issues, by combining antibacterial silver nanoparticles (AgNPs) and regenerative properties of lactoferrin (Lf).

View Article and Find Full Text PDF

Photodynamic inactivation (PDI) of microorganisms, based on the ability of photosensitizers to produce reactive oxygen species (ROS) under adequate irradiation, emerges as a promising technique to face the increasing bacterial resistance to conventional antimicrobials. In this work, we analyze the combined action of Riboflavin (Rf) and pectin-coated gold nanoparticles (PecAuNP) on () and () as suitable PDI strategy. We demonstrate that gold ions can be generated upon Rf-photosensitized oxidation of PecAuNP.

View Article and Find Full Text PDF

Device-associated infections (DAI) remain a serious concern in modern healthcare. Bacterial attachment to a surface is the first step in biofilm formation, which is one of the main causes of DAIs. The development of materials capable of preventing or inhibiting bacterial attachment constitutes a promising approach to deal with this problem.

View Article and Find Full Text PDF

The increasing incidence of infections in implantable devices has encouraged the search for biocompatible antimicrobial surfaces. To inhibit the bacterial adhesion and proliferation on biomaterials, several surface functionalization strategies have been developed. However, most of these strategies lead to bacteriostatic effect and only few of these are able to reach the bactericidal condition.

View Article and Find Full Text PDF