Publications by authors named "Fioramonti M"

The mammary gland (MG) is composed of three main epithelial lineages, the basal cells (BC), the estrogen receptor (ER) positive luminal cells (ER+ LC), and the ER negative LC (ER- LC). Defining the cell identity of each lineage and how it is modulated throughout the different stages of life is important to understand how these cells function and communicate throughout life. Here, we used transgenic mice specifically labelling ER+ LC combined to cell surface markers to isolate with high purity the 3 distinct cell lineages of the mammary gland and defined their expression profiles and chromatin landscapes by performing bulk RNAseq and ATACseq of these isolated populations in puberty, adulthood and mid-pregnancy.

View Article and Find Full Text PDF
Article Synopsis
  • Glandular epithelia, like mammary and prostate glands, consist of basal cells (BCs) and luminal cells (LCs), with adult basal stem cells (BSCs) having limited multipotency under normal conditions.
  • When LCs are removed, BSCs can regain their multipotency and follow a differentiation program akin to embryonic development, as shown through RNA sequencing.
  • The study reveals that LCs communicate with BSCs, primarily through TNF signaling, to maintain the restricted multipotency of BSCs, highlighting the importance of this interaction for proper stem cell function in glandular tissues.
View Article and Find Full Text PDF

In the version of this Article originally published, ref. 52 was incorrectly only attributed to its corresponding author, Fre, S., and an older title was used.

View Article and Find Full Text PDF

The mammary gland is composed of basal cells and luminal cells. It is generally believed that the mammary gland arises from embryonic multipotent progenitors, but it remains unclear when lineage restriction occurs and what mechanisms are responsible for the switch from multipotency to unipotency during its morphogenesis. Here, we perform multicolour lineage tracing and assess the fate of single progenitors, and demonstrate the existence of a developmental switch from multipotency to unipotency during embryonic mammary gland development.

View Article and Find Full Text PDF

In cancer, the epithelial-to-mesenchymal transition (EMT) is associated with tumour stemness, metastasis and resistance to therapy. It has recently been proposed that, rather than being a binary process, EMT occurs through distinct intermediate states. However, there is no direct in vivo evidence for this idea.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common primary malignant tumor of the bone. Due to its high heterogeneity and to survival signals from bone microenvironment, OS can resist to standard treatments, therefore novel therapies are needed. c-MET oncogene, a tyrosine-kinase receptor, plays a crucial role in OS initiation and progression.

View Article and Find Full Text PDF

The possibility of detecting and classifying living cells in a label-free and non-invasive manner holds significant theranostic potential. In this work, Hyperspectral Imaging (HSI) has been successfully applied to the analysis of macrophagic polarization, given its central role in several pathological settings, including the regulation of tumour microenvironment. Human monocyte derived macrophages have been investigated using hyperspectral reflectance confocal microscopy, and hyperspectral datasets have been analysed in terms of M1 vs.

View Article and Find Full Text PDF

The mammary gland (MG) is composed of different cell lineages, including the basal and the luminal cells (LCs) that are maintained by distinct stem cell (SC) populations. LCs can be subdivided into estrogen receptor (ER) and ER cells. LCs act as the cancer cell of origin in different types of mammary tumors.

View Article and Find Full Text PDF

Background: Statins represent a class of medications widely prescribed to efficiently treat dyslipidemia. These drugs inhibit 3-βhydroxy 3β-methylglutaryl Coenzyme A reductase (HMGR), the rate-limiting enzyme of mevalonate (MVA) pathway. Besides cholesterol, MVA pathway leads to the production of several other compounds, which are essential in the regulation of a plethora of biological activities, including in the central nervous system.

View Article and Find Full Text PDF

Regenerative medicine is taking great advantage from the use of biomaterials in the treatments of a wide range of diseases and injuries. Among other biomaterials, self-assembling peptides are appealing systems due to their ability to spontaneously form nanostructured hydrogels that can be directly injected into lesions. Indeed, self-assembling peptide scaffolds are expected to behave as biomimetic matrices able to surround cells, to promote specific interactions, and to control and modify cell behavior by mimicking the native environment as well.

View Article and Find Full Text PDF

Cabozantinib, a c-MET and vascular endothelial growth factor receptor 2 inhibitor, demonstrated to prolong progression free survival and improve skeletal disease-related endpoints in castration-resistant prostate cancer and in metastatic renal carcinoma. Our purpose is to investigate the direct effect of cabozantinib on bone microenvironment using a total human model of primary osteoclasts and osteoblasts.Osteoclasts were differentiated from monocytes isolated from healthy donors; osteoblasts were derived from human mesenchymal stem cells obtained from bone fragments of orthopedic surgery patients.

View Article and Find Full Text PDF

Bisphosphonates (BPs) are approved as standard therapy in breast cancer for the treatment of bone metastases, since they were demonstrated to reduce the prevalence of skeletal-related events including fractures and hypercalcemia. In the adjuvant setting, BPs can be given to prevent and treat tumor therapy-induced bone loss in premenopausal and postmenopausal women and, owing to their beneficial effect on bone turnover, have also been evaluated for prevention of bone metastases occurrence. In this article we will review the mechanisms through which BPs have been demonstrated to prevent premetastatic niche formation and cell proliferation in bone lesions.

View Article and Find Full Text PDF

Introduction: Bone metastases are virtually incurable resulting in significant disease morbidity, reduced quality of life and mortality. Bone provides a unique microenvironment whose local interactions with tumor cells offer novel targets for therapeutic interventions. Increased understanding of the pathogenesis of bone disease has led to the discovery and clinical utility of bone-targeted agents other than bisphosphonates and denosumab, currently, the standard of care in this setting.

View Article and Find Full Text PDF

Abiraterone acetate (ABI) is associated not only with a significant survival advantage in both chemotherapy-naive and -treated patients with metastatic castration-resistant prostate cancer (mCRPC), but also with a delay in time to development of Skeletal Related Events and in radiological skeletal progression. These bone benefits may be related to a direct effect on prostate cancer cells in bone or to a specific mechanism directed to bone microenvironment. To test this hypothesis we designed an in vitro study aimed to evaluate a potential direct effect of ABI on human primary osteoclasts/osteoblasts (OCLs/OBLs).

View Article and Find Full Text PDF

Liposarcoma (LPS) is the most common soft tissue sarcoma. It has been demonstrated that mir-155 was the most overexpressed miRNA in well-differentiated LPS(WDLPS)/dedifferentiated LPS (DDLPS). The aim of this study is to evaluate the involvement of Dicer, Drosha and mir-155 in development of LPS and their possible role in stratification of different histological subtypes.

View Article and Find Full Text PDF

The development of bone metastases requires multistep and multicellular machinery consisting not only of processes shared with any type of metastases (formation of a pre-metastatic niche, chemotaxis of tumor cells into the host tissue, tumor cells escape from the microvasculature), but also biological interactions that are strictly related to the particular bone microenvironment (bone marrow colonization by cancer cells, osteomimicry, deregulation of bone homeostasis). MiRNAs are highly conserved, small RNAs molecules that regulate gene expression. The functional consequence of miRNA deregulation lies in the mRNA targets whose expression is altered.

View Article and Find Full Text PDF

Mitochondria are the main cellular source of Reactive Oxygen Species (ROS). Alterations of mitochondrial metabolism and consequent loss of mitochondrial membrane potential may lead to redox imbalance and in turn to DNA damage, chromosomal instability and apoptosis. On the other hand, impaired mitochondrial functions may either exacerbate the detrimental effects of geno- and cytotoxic agents or may bring beneficial cellular responses.

View Article and Find Full Text PDF

The activities of the enzymes arginase and rhodanese were examined in homogenates of 13 mouse cell strains and 2 human cell strains after long cultivation of the cells in vitro. Three strains of mouse liver origin showed both high arginase and rhodanese activities in keeping with activities of the tissue of origin. Two strains of cells of human epithelial origin, HeLa and epidermis, were found to have high rhodanese activity but low arginase activity, the skin being almost devoid of it.

View Article and Find Full Text PDF