RNA interference (RNAi) is a promising tool for the treatment of chronic viral infection, such as that caused by the hepatitis B virus (HBV). RNAi activators, including expressed primary microRNA (pri-miRNA) mimics, can effectively silence viral gene expression and thereby inhibit viral replication. Here we describe a protocol for the design, generation and functional assessment of cassettes encoding effective single and multimeric pri-miRNA mimics.
View Article and Find Full Text PDFHIV-1 infection continues to be a global health challenge and a vaccine is urgently needed. Broadly neutralizing antibodies (bNAbs) are considered essential as they inhibit multiple HIV-1 strains, but they are difficult to elicit by conventional immunization. In contrast, non-neutralizing antibodies that correlated with reduced risk of infection in the RV144 HIV vaccine trial are relatively easy to induce, but responses are not durable.
View Article and Find Full Text PDFMol Ther Nucleic Acids
January 2016
Primary microRNA (pri-miRNA) mimics are important mediators of effective gene silencing and are well suited for sustained therapeutic applications. Pri-miRNA mimics are processed in the endogenous miRNA biogenesis pathway, where elements of the secondary RNA structure are crucial for efficient miRNA production. Cleavage of the pri-miRNA to a precursor miRNA (pre-miRNA) by Drosha-DGCR8 typically occurs adjacent to a basal stem of ~11 bp.
View Article and Find Full Text PDFRNA silencing has been exploited to produce transgenic plants with resistance to viral pathogens via posttranscriptional gene silencing (PTGS). In some cases, this technology is difficult to apply due to the instability of inverted repeat (IR) constructs during cloning and plant transformation. Although such constructs have been shown to be stabilized with introns and efficiently induce RNA silencing, we found that the Pdk intron did not stabilize South African cassava mosaic virus (SACMV) silencing constructs.
View Article and Find Full Text PDF