Publications by authors named "Fiona Xu"

The architecture of cell culture, two-dimensional (2D) versus three-dimensional (3D), significantly impacts various cellular factors, including cell-cell interactions, nutrient and oxygen gradients, metabolic activity, and gene expression profiles. This can result in different cellular responses during cancer drug treatment, with 3D-cultured cells often exhibiting higher resistance to chemotherapeutic drugs. While various genetic and proteomic analyses have been employed to investigate the underlying mechanisms of this increased resistance, complementary techniques that provide experimental evidence of spatial molecular profiling data are limited.

View Article and Find Full Text PDF

The architecture of cell culture-two-dimensional (2D) versus three-dimensional (3D)-significantly impacts various cellular factors, including cell-cell interactions, nutrient and oxygen gradients, metabolic activity, and gene expression profiles. This can result in different cellular responses during cancer drug treatment, with 3D-cultured cells often exhibiting higher resistance to chemotherapeutic drugs. While various genetic and proteomic analyses have been employed to investigate the underlying mechanisms of this increased resistance, complementary techniques that provide experimental evidence of spatial molecular profiling data are limited.

View Article and Find Full Text PDF

Significance: The molecular mechanisms driving the progression from nonalcoholic fatty liver (NAFL) to fibrosing steatohepatitis (NASH) are insufficiently understood. Techniques enabling the characterization of different lipid species with both chemical and spatial information can provide valuable insights into their contributions to the disease progression.

Aim: We extend the utility of stimulated Raman scattering (SRS) microscopy to characterize and quantify lipid species in liver tissue sections from patients with NAFL and NASH.

View Article and Find Full Text PDF

Intratumoral heterogeneity is a substantial cause of drug resistance development during chemotherapy or other drug treatments for cancer. Therefore, monitoring and measuring cell exposure and response to drugs at the single-cell level are crucial. Previous research suggested that the single-cell growth rate can be used to investigate drug-cell interactions.

View Article and Find Full Text PDF

Stimulated Raman scattering (SRS) microscopy is a label-free quantitative optical technique for imaging molecular distributions in cells and tissues by probing their intrinsic vibrational frequencies. Despite its usefulness, existing SRS imaging techniques have limited spectral coverage due to either a wavelength tuning constraint or narrow spectral bandwidth. High-wavenumber SRS imaging is commonly used to map lipid and protein distribution in biological cells and visualize cell morphology.

View Article and Find Full Text PDF

Cell size and density are tightly controlled in mammalian cells. They impact a wide range of physiological functions, including osmoregulation, tissue homeostasis, and growth regulation. Compared to size, density variation for a given cell type is typically much smaller, implying that cell-type-specific density plays an important role in cell function.

View Article and Find Full Text PDF

Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications.

View Article and Find Full Text PDF

Histone lysine methyltransferase NSD2 (WHSC1/MMSET) is overexpressed frequently in multiple myeloma due to the t(4;14) translocation associated with 15% to 20% of cases of this disease. NSD2 has been found to be involved in myelomagenesis, suggesting it may offer a novel therapeutic target. Here we show that NSD2 methyltransferase activity is crucial for clonogenicity, adherence, and proliferation of multiple myeloma cells on bone marrow stroma in vitro and that NSD2 is required for tumorigenesis of t(4;14)+ but not t(4;14)- multiple myeloma cells in vivo.

View Article and Find Full Text PDF