Publications by authors named "Fiona S Wyllie"

The accelerated aging of Werner syndrome (WS) fibroblasts can be prevented by treatment with the p38 kinase inhibitor SB203580. If accelerated cellular senescence underlies the premature ageing features seen in this human aging model, then p38 inhibitors may have therapeutic potential in WS. However, SB203580 can inhibit in vitro several kinases that are involved in control of cellular growth, in particular, c-Raf1, CK1, and RIPK2.

View Article and Find Full Text PDF

Werner syndrome (WS) is a premature aging disorder used as a model of normal human aging. WS individuals have several characteristics of normal aging, such as cataracts, hair graying, and skin aging, but manifest these at an early age. Additionally, WS individuals have high levels of inflammatory diseases, such as atherosclerosis and type 2 diabetes.

View Article and Find Full Text PDF

An in vitro model, based on normal (primary) human astrocytes (NHAs), was used to investigate the nature of the selection pressures for events that occur during the progression of astrocyte-derived tumors and, in particular, the potential role of proliferative life span barriers (PLBs). As with fibroblasts, NHAs senesced with elevated p21(WAF1) and senescence-associated beta-galactosidase activities. Unlike fibroblasts, replicative senescence (M1) occurred much earlier, after approximately 20 pd and was not bypassed by hTERT expression.

View Article and Find Full Text PDF

Werner-syndrome fibroblasts have a reduced in vitro life span before entering replicative senescence. Although this has been thought to be causal in the accelerated ageing of this disease, controversy remains as to whether Werner syndrome is showing the acceleration of a normal cellular ageing mechanism or the occurrence of a novel Werner-syndrome-specific process. Here, we analyse the signalling pathways responsible for senescence in Werner-syndrome fibroblasts.

View Article and Find Full Text PDF

The accumulation of senescent fibroblasts within tissues has been suggested to play an important role in mediating impaired dermal wound healing, which is a major clinical problem in the aged population. The concept that replicative senescence in wound fibroblasts results in reduced proliferation and the failure of refractory wounds to respond to treatment has therefore been proposed. However, in the chronic wounds of aged patients the precise relationship between the observed alteration in cellular responses with aging and replicative senescence remains to be determined.

View Article and Find Full Text PDF