Publications by authors named "Fiona Polack"

Simulation is a key tool for researching complex system behaviour. Agent-based simulation has been applied across domains, such as biology, health, economics and urban sciences. However, engineering robust, efficient, maintainable, and reliable agent-based simulations is challenging.

View Article and Find Full Text PDF

Simulations of evolutionary dynamics often employ white noise as a model of stochastic environmental variation. Whilst white noise has the advantages of being simply generated and analytically tractable, empirical analyses demonstrate that most real environmental time series have power spectral densities consistent with pink or red noise, in which lower frequencies contribute proportionally greater amplitudes than higher frequencies. Simulated white noise environments may therefore fail to capture key components of real environmental time series, leading to erroneous results.

View Article and Find Full Text PDF

In May 2019, a workshop on principled development of future agent-based simulations was held at Keele University. Participants spanned companies and academia, and a range of domains of interest, as well as participant career stages. This report summarizes the discussions and main outcomes from this workshop.

View Article and Find Full Text PDF

The application of computational and mathematical modelling to explore the mechanics of biological systems is becoming prevalent. To significantly impact biological research, notably in developing novel therapeutics, it is critical that the model adequately represents the captured system. Confidence in adopting in silico approaches can be improved by applying a structured argumentation approach, alongside model development and results analysis.

View Article and Find Full Text PDF

Computer simulation can be used to inform in vivo and in vitro experimentation, enabling rapid, low-cost hypothesis generation and directing experimental design in order to test those hypotheses. In this way, in silico models become a scientific instrument for investigation, and so should be developed to high standards, be carefully calibrated and their findings presented in such that they may be reproduced. Here, we outline a framework that supports developing simulations as scientific instruments, and we select cancer systems biology as an exemplar domain, with a particular focus on cellular signalling models.

View Article and Find Full Text PDF

Quantum error-correcting codes can protect multipartite quantum states from errors on some limited number of their subsystems (usually qubits). We construct a family of Bell inequalities which inherit this property from the underlying code and exhibit the violation of local realism, without any quantum information processing (except for the creation of an entangled state). This family shows no reduction in the size of the violation of local realism for arbitrary errors on a limited number of qubits.

View Article and Find Full Text PDF