Publications by authors named "Fiona McBryde"

Background: The mesenteric venous reservoir plays a vital role in mediating blood volume and pressure changes and is richly innervated by sympathetic nerves; however, the precise nature of venous sympathetic regulation and its role during hypertension remains unclear. We hypothesized that sympathetic drive to mesenteric veins in spontaneously hypertensive (SH) rats is raised, increasing mean circulatory filling pressure (MCFP), and impairing mesenteric capacitance.

Methods: Arterial pressure, central venous pressure, mesenteric arterial, and venous blood flow were measured simultaneously in conscious male Wistar and SH rats.

View Article and Find Full Text PDF

Background: Intraoperative arterial hypotension (IOH) is a common side effect of general anesthesia (GA), associated with poor outcomes in ischemic stroke. While IOH is more prevalent with hypertension, it is unknown whether IOH may differ when GA is induced during ischemic stroke, versus other clinical settings. This is important given that many stroke patients receive GA for endovascular thrombectomy.

View Article and Find Full Text PDF

Aims: The carotid bodies (CBs) of spontaneously hypertensive (SH) rats exhibit hypertonicity and hyperreflexia contributing to heightened peripheral sympathetic outflow. We hypothesized that CB hyperexcitability is driven by its own sympathetic innervation.

Methods And Results: To test this, the chemoreflex was activated (NaCN 50-100 µL, 0.

View Article and Find Full Text PDF

Registration: Australian New Zealand Clinical Trials Registry: ACTRN12619001274167p.

Rationale: Cerebral blood flow is blood pressure-dependent when cerebral autoregulation is impaired. Cerebral ischemia and anesthetic drugs impair cerebral autoregulation.

View Article and Find Full Text PDF

The classic dogma of cerebral autoregulation is that cerebral blood flow is steadily maintained across a wide range of perfusion pressures. This has been challenged by recent studies suggesting little to no "autoregulatory plateau" in the relationship between cerebral blood flow and blood pressure (BP). Therefore, the mechanisms underlying the cerebral pressure-flow relationship still require further understanding.

View Article and Find Full Text PDF

Optimizing cerebral perfusion is key to rescuing salvageable ischemic brain tissue. Despite being an important determinant of cerebral perfusion, there are no effective guidelines for blood pressure (BP) management in acute stroke. The control of cerebral blood flow (CBF) involves a myriad of complex pathways which are largely unaccounted for in stroke management.

View Article and Find Full Text PDF

Atmospheric oxygen concentrations rose markedly at several points in evolutionary history. Each of these increases was followed by an evolutionary leap in organismal complexity, and thus the cellular adaptions we see today have been shaped by the levels of oxygen within our atmosphere. In eukaryotic cells, oxygen is essential for the production of adenosine 5'-triphosphate (ATP) which is the 'Universal Energy Currency' of life.

View Article and Find Full Text PDF

The carotid body is implicated as an important mediator and potential treatment target for hypertension. The mechanisms driving increased carotid body tonicity in hypertension are incompletely understood. Using a large preclinical animal model, which is crucial for translation, we hypothesized that carotid sinus nerve denervation would chronically decrease blood pressure in a renovascular ovine model of hypertension in which hypertonicity of the carotid body is associated with reduced common carotid artery blood flow.

View Article and Find Full Text PDF

Over 80% of patients exhibit an acute increase in blood pressure (BP) following stroke. Current clinical guidelines make no distinction in BP management between patients with or without prior hypertension. Spontaneously hypertensive (SH) rats were preinstrumented with telemeters to record BP, intracranial pressure, and brain tissue oxygen in the predicted ischemic penumbra for 3 days before and 10 days after transient middle cerebral artery occlusion (n=8 per group) or sham (n=5).

View Article and Find Full Text PDF

Background and Purpose- Over 80% of ischemic stroke patients show an abrupt increase in arterial blood pressure in the hours and days following ischemic stroke. Whether this poststroke hypertension is beneficial or harmful remains controversial and the underlying physiological basis is unclear. Methods- To investigate the dynamic cardiovascular response to stroke, adult Wistar rats (n=5-8 per group, 393±34 g) were instrumented with telemeters to blood pressure, intracranial pressure, renal sympathetic nerve activity, and brain tissue oxygen in the predicted penumbra (Po).

View Article and Find Full Text PDF

Dysfunction of the apelinergic system, comprised of the neuropeptide apelin mediating its effects via the G protein-coupled apelin receptor (APJ), may underlie the onset of cardiovascular disease such as hypertension. Apelin expression is increased in the rostral ventrolateral medulla (RVLM) in spontaneously hypertensive rats (SHRs) compared to Wistar-Kyoto (WKY) normotensive rats, however, evidence that the apelinergic system chronically influences mean arterial blood pressure (MABP) under pathophysiological conditions remains to be established. In this study we investigated, in conscious unrestrained rats, whether APJ contributes to MABP and sympathetic vasomotor tone in the progression of two models of hypertension - SHR and -NAME-treated rats - and whether APJ contributes to the development of hypertension in pre-hypertensive SHR.

View Article and Find Full Text PDF

Sympathetic overdrive is associated with many diseases, but its origin remains an enigma. An emerging hypothesis in the development of cardiovascular disease is that the brain puts the utmost priority on maintaining its own blood supply; even if this comes at the "cost" of high blood pressure to the rest of the body. A critical step in making a causative link between reduced brain blood flow and cardiovascular disease is how changes in cerebral perfusion affect the sympathetic nervous system.

View Article and Find Full Text PDF

Key Points: Carotid bodies play a critical role in maintaining arterial pressure during hypoxia and this has important implications when considering resection therapy of the carotid body in disease states such as hypertension. Curbing hypertension in patients whether resting or under stress remains a major global health challenge. We demonstrated previously the benefits of removing carotid body afferent input into the brain for both alleviating sympathetic overdrive and reducing blood pressure in neurogenic hypertension.

View Article and Find Full Text PDF

Key Points: Peripheral chemoreflex sensitization is a feature of renovascular hypertension. Carotid sinus nerve denervation (CSD) has recently been shown to relieve hypertension and reduce sympathetic activity in other rat models of hypertension. We show that CSD in renovascular hypertension halts further increases in blood pressure.

View Article and Find Full Text PDF

In view of the high proportion of individuals with resistance to antihypertensive medication and/or poor compliance or tolerance of this medication, new drugs to treat hypertension are urgently needed. Here we show that peripheral chemoreceptors generate aberrant signaling that contributes to high blood pressure in hypertension. We discovered that purinergic receptor P2X3 (P2rx3, also known as P2x3) mRNA expression is upregulated substantially in chemoreceptive petrosal sensory neurons in rats with hypertension.

View Article and Find Full Text PDF

Despite the plethora of current treatment options, hypertension remains a difficult condition to adequately control, and there is a pressing need for novel therapeutic strategies. The carotid body has recently become the focus of considerable interest as a potential novel treatment target in essential hypertension. Herein, we appraise the current literature suggesting that the carotid body plays an important causative role to generate sympathetic overactivity and drive increases in arterial pressure, in animal models of hypertension.

View Article and Find Full Text PDF

Although cerebral perfusion pressure (CPP) is known to be fundamental in the control of normal brain function, there have been no previous long-term measurements in animal models. The aim of this study was to explore the stability and viability of long-term recordings of intracranial pressure (ICP) in freely moving rats via a telemetry device. We also developed a repeatable surgical approach with a solid-state pressure sensor at the tip of the catheter placed under the dura and in combination with arterial pressure (AP) measurement to enable the calculation of CPP.

View Article and Find Full Text PDF

Hypertension is a leading risk factor for the development of several cardiovascular diseases. As the global prevalence of hypertension increases, so too has the recognition of resistant hypertension. Whilst figures vary, the proportion of hypertensive patients that are resistant to multiple drug therapies have been reported to be as high as 16.

View Article and Find Full Text PDF

In the spontaneously hypertensive (SH) rat, hyperoxic inactivation of the carotid body (CB) produces a rapid and pronounced fall in both arterial pressure and renal sympathetic nerve activity (RSA). Here we show that CB de-afferentation through carotid sinus nerve denervation (CSD) reduces the overactive sympathetic activity in SH rats, providing an effective antihypertensive treatment. We demonstrate that CSD lowers RSA chronically and that this is accompanied by a depressor response in SH but not normotensive rats.

View Article and Find Full Text PDF

Renal denervation has shown promise in the treatment of resistant hypertension, although the mechanisms underlying the blood pressure (BP) reduction remain unclear. In a translational study of spontaneously hypertensive rats (n=7, surgical denervation) and resistant hypertensive human patients (n=8; 5 men, 33-71 years), we examined the relationship among changes in BP, sympathetic nerve activity, and cardiac and sympathetic baroreflex function after renal denervation. In humans, mean systolic BP (SBP; sphygmomanometry) and muscle sympathetic nerve activity (microneurography) were unchanged at 1 and 6 months after renal denervation (P<0.

View Article and Find Full Text PDF

The peripheral chemoreflex is known to be enhanced in individuals with hypertension. In pre-hypertensive (PH) and adult spontaneously hypertensive rats (SHRs) carotid body type I (glomus) cells exhibit hypersensitivity to chemosensory stimuli and elevated sympathoexcitatory responses to peripheral chemoreceptor stimulation. Herein, we eliminated carotid body inputs in both PH-SHRs and SHRs to test the hypothesis that heightened peripheral chemoreceptor activity contributes to both the development and maintenance of hypertension.

View Article and Find Full Text PDF

1. Sexual intercourse is associated with an increased risk of death from arrhythmia development, myocardial infarction or stroke. It is unclear whether this increased risk is due to physical exertion alone or whether it is an inherent aspect of sexual activity itself.

View Article and Find Full Text PDF